@ SALTSTACK

Salt Documentation
Release 2016.3.4

SaltStack, Inc.

Nov 07, 2016

Contents

1

Installation

1.1 QuickInstall.o
1.2 Platform-specific Installation Instructions
1.3 Initial Configuration
1.4 Additional Installation Guides
1.5 Dependencies
1.6 Optional Dependencies
1.7 Upgrading Salt
1.8 Building Packages using SaltPacko L.
Configuring Salt

2.1 Configuring the Salt Master
2.2 Configuring the Salt Minion,
2.3 Configuration file examples L L.
2.4 Minion Blackout Configuration
25 AccessControlSystem
2.6 JobManagement
2.7 ManagingtheJobCache
2.8 Storing Job Results in an External System
29 Logging
2.10 SaltFile Server
2.11 Git Fileserver Backend Walkthrough
2.12 MinionFS Backend Walkthrough
2.13 Salt Package Manager
2.14 Storing Data in Other Databases
2.15 Running the Salt Master/Minion as an Unprivileged User
216 UsingcronwithSalt
2.17 Use cron to initiate a highstate,
218 HardeningSalt
2.19 Security disclosure policy Lo
220 SaltTransport
2.21 Master Tops System L
222 Returners e
223 Renderers
Using Salt

31 Grains
3.2 Storing Static Datainthe Pillar

3.3 Targeting MInions o o i i i i e e e e e e
34 TheSalt Mine o e
35 Runners
3.6 SaltEngines e e e
3.7 Understanding YAML e
3.8 Understanding Jinja L e
3.9 Tutorials Index
3.10 Troubleshooting e
3.11 Frequently Asked Questions L
3.12 Salt Best Practices. o o i i e e e
Remote Execution

4.1 Remote execution tutorial L L e
4.2 Running Commands on Salt Minions e
43 Writing Execution Modules L
Configuration Management

5.1 How DoIUse Salt States? e e
5.2 States tutorial, part 1 - BasicUsage e
5.3 States tutorial, part 2 - More Complex States, Requisites
5.4 States tutorial, part 3 - Templating, Includes, Extends
5.5 States tutorial, part4
5.6 State System Reference
Events & Reactor

6.1 EventSystem e e
6.2 Beacons
6.3 Reactor System e
Orchestration

7.1 Orchestrate Runner e
Salt SSH

8.1 Getting Started e
8.2 Salt SSHRoOSter e e
83 Deploysshkeyforsalt-ssh.
84 Calling Salt SSH e
8.5 States ViaSalt SSH o e
8.6 Targeting with Salt SSH e
8.7 Configuring Salt SSH e
8.8 Running Salt SSH as non-root user e
8.9 Define CLIOptions with Saltfile
8.10 Debuggingsalt-ssh
Salt Cloud

9.1 Configuration e
9.2 Configuration Inheritance L
93 QuickStart
9.4 UsingSaltCloud e
9.5 Core Configuration e e e
9.6 Windows Configuration e
9.7 Cloud Provider Specifics e
9.8 Miscellaneous Options L
9.9 Troubleshooting Steps L
9.10 Extending Salt Cloud

349
349
351
353

363
363
371
375
376
381
383

439
439
446
451

461
461

465
465
465
466
466
467
467
467
467
468
468

9.11 Using Salt Cloud from Salt 626

9.12 Feature CompariSOn o v v v i i i e e e e e e e e e 631
9.13 Tutorials 634
10 Salt Proxy Minion 641
10.1 New in 2016.3 o e e e e e e 641
10.2 New in 2015.8.2 o e e e e e e e 642
10.3 New in 2015.8 e e e e 643
10.4 Getting Started 643
10.5 The _ proxyenabled directive 651
10.6 SSH Proxymodules e 653
11 Salt Virt 667
111 Salt Virt Tutorial e e e e 667
11.2 The Salt Virt Runner e e e e 667
11.3 BasedonLiveStateData e e e e e 668
11.4 Deploy from Network or Disk L 668
12 Command Line Reference 677
12.1 salt-call e 677
12,2 salt . . . o e, 679
12.3 salt-cloud e 683
124 salt-Cp e 683
125 salt-key 685
12,6 salt-master. e e 688
12,7 salt-minion e 689
12.8 salt-proxXy 690
12,9 salt-run L e e 691
12.10 salt-ssh. o o e e 692
12171 salt-syndic e 695
1212 salt-api o 696
1213 Spm . . L L e e e 697
13 Salt Module Reference 699
13.1 authmodules 699
13.2 beaconmodules 706
133 enginemodules L L e e 715
13.4 fileserver modules L e 719
135 grainsmodules e 722
13.6 executionmodules 726
13.7 netapimodules e 1732
13.8 outputmodules L e 1762
13.9 pillarmodules 1769
13.10 proxy modules e 1806
13.11 queuemodules L 1820
13.12 rostermodules L. e 1821
13.13 runnermodules L L L e 1825
13.14 sdbmodules L e e e 1860
13.15 serializer modules L e e 1865
13.16 state modules L e e e 1868
13.17 thorium modules e 2221
13.18 master topsmodules L 2222
13.19 wheel modules e 2225
14 APIs 2231

14.1 Pythonclient APL o L e
14.2 netapimodules e

15 Architecture

15.1 High Availability Featuresin Salt
152 SaltSyndic. e
153 Using Saltatscale. L
15.4 Multi Master Tutorial e e e e e e e e e e e
15.5 Multi-Master-PKI Tutorial With Failover

16 Windows

16.1 Windows Software Repository
16.2 Windows-specific Behaviour L

17 Developing Salt

17.1 OVEIVIEW ot e e e e e e e e e e e e e e
17.2 SaltClient L e e
17.3 Salt Master L e
174 Salt MINIono o e e
17.5 A Note on ClearFuncs vs. AESFUNCS o0 it
17.6 Contributing e e e
17.7 Deprecating Code L e
17.8 Dunder Dictionaries L
17.9 External Pillars oL
17.10 Installing Salt for development L L
17.11 GitHub Labels and Milestones
17.12 Logging Internals L
17.13 Modular Systems L e
17.14 Package Providers
17.15 Reporting Bugs e e e
17.16 Salt Topology o e
17.17 Translating Documentation L L
17.18 Developing Salt Tutorial
17.19 Salt's Test Suite o L e
17.20 raet L e e e e
17.21 SaltStack Git Policy e
17.22 Salt Conventions e
17.23 Saltcode and internals L.
17.24 Salt Community Projects L
17.25 Salt's Test Suite: An Introduction L

18 Release Notes

18.1 Latest Branch Release e e
18.2 Previous Releases e e e

Salt Module Index

Index

CHAPTER 1

Installation

This section contains instructions to install Salt. If you are setting up your environment for the first time, you should
install a Salt master on a dedicated management server or VM, and then install a Salt minion on each system that you
want to manage using Salt. For now you don't need to worry about your architecture, you can easily add components
and modify your configuration later without needing to reinstall anything.

The general installation process is as follows:

1. Install a Salt master using the instructions for your platform or by running the Salt bootstrap script. If you use
the bootstrap script, be sure to include the =M option to install the Salt master.

2. Make sure that your Salt minions can find the Salt master.
3. Install the Salt minion on each system that you want to manage.
4. Accept the Salt minion keys after the Salt minion connects.

After this, you should be able to run a simple command and receive returns from all connected Salt minions.

’salt 'x' test.ping

1.1 Quick Install

On most distributions, you can set up a Salt Minion with the Salt bootstrap.

1.2 Platform-specific Installation Instructions
These guides go into detail how to install Salt on a given platform.

1.2.1 Arch Linux

Installation

Salt (stable) is currently available via the Arch Linux Official repositories. There are currently -git packages available
in the Arch User repositories (AUR) as well.

Salt Documentation, Release 2016.3.4

Stable Release

Install Salt stable releases from the Arch Linux Official repositories as follows:

’pacman -S salt-zmq

To install Salt stable releases using the RAET protocol, use the following:

’pacman -S salt-raet

Note: transports

Unlike other linux distributions, please be aware that Arch Linux's package manager pacman defaults to RAET as
the Salt transport. If you want to use ZeroMQ instead, make sure to enter the associated number for the salt-zmq
repository when prompted.

Tracking develop

To install the bleeding edge version of Salt (may include bugs!), use the -git package. Installing the -git package as
follows:

wget https://aur.archlinux.org/packages/sa/salt-git/salt-git.tar.gz
tar xf salt-git.tar.gz

cd salt-git/

makepkg -is

Note: yaourt
If a tool such as Yaourt is used, the dependencies will be gathered and built automatically.

The command to install salt using the yaourt tool is:

yaourt salt-git

Post-installation tasks

systemd

Activate the Salt Master and/or Minion via systemct as follows:

systemctl enable salt-master.service
systemctl enable salt-minion.service

Start the Master

Once you've completed all of these steps you're ready to start your Salt Master. You should be able to start your Salt
Master now using the command seen here:

systemctl start salt-master

Now go to the Configuring Salt page.

2 Chapter 1. Installation

https://aur.archlinux.org/packages.php?ID=5863

Salt Documentation, Release 2016.3.4

1.2.2 Debian GNU/Linux / Raspbian

Debian GNU/Linux distribution and some derivatives such as Raspbian already have included Salt packages to their
repositories. However, current stable release codenamed " "Jessie" contains old outdated Salt release. It is recom-
mended to use SaltStack repository for Debian as described below.

Installation from official Debian and Raspbian repositories is described here.
Installation from the Official SaltStack Repository

Packages for Debian 8 (Jessie) and Debian 7 (Wheezy) are available in the Official SaltStack repository.

Instructions are at https://repo.saltstack.com/#debian.

Note: Regular security support for Debian 7 ended on April 25th 2016. As a result, 2016.3.1 and 2015.8.10 will be
the last Salt releases for which Debian 7 packages are created.

Installation from the Debian / Raspbian Official Repository
Stretch (Testing) and Sid (Unstable) distributions are already contain mostly up-to-date Salt packages built by Debian
Salt Team. You can install Salt components directly from Debian.

On Jessie (Stable) there is an option to install Salt minion from Stretch with python-tornado dependency from jessie-
backports repositories.

To install fresh release of Salt minion on Jessie:
1. Add jessie-backports and stretch repositories:

Debian:

echo 'deb http://httpredir.debian.org/debian jessie-backports main' >> /etc/apt/
—sources. list
echo 'deb http://httpredir.debian.org/debian stretch main' >> /etc/apt/sources.list

Raspbian:

echo 'deb http://archive.raspbian.org/raspbian/ stretch main' >> /etc/apt/sources.

2. Make Jessie a default release:

echo 'APT::Default-Release "jessie";' > /Jetc/apt/apt.conf.d/10apt

3. Install Salt dependencies:
Debian:

apt-get update
apt-get install python-zmq python-tornado/jessie-backports salt-common/stretch

Raspbian:

apt-get update
apt-get install python-zmq python-tornado/stretch salt-common/stretch

1.2. Platform-specific Installation Instructions 3

https://repo.saltstack.com/#debian

Salt Documentation, Release 2016.3.4

4. Install Salt minion package from Stretch:

apt-get install salt-minion/stretch

Install Packages
Install the Salt master, minion or other packages from the repository with the apt-get command. These examples
each install one of Salt components, but more than one package name may be given at a time:

. apt-get install salt-api

. apt-get install salt-cloud

. apt-get install salt-master

. apt-get install salt-minion

. apt-get install salt-ssh

. apt-get dinstall salt-syndic

Post-installation tasks

Now, go to the Configuring Salt page.

1.2.3 Fedora

Beginning with version 0.9.4, Salt has been available in the primary Fedora repositories and EPEL. It is installable
using yum or dnf, depending on your version of Fedora.

Note: Released versions of Salt starting with 2015 .5. 2 through 2016. 3. 2 do not have Fedora packages available
though EPEL. To install a version of Salt within this release array, please use SaltStack's Bootstrap Script and use the
git method of installing Salt using the version's associated release tag.

Release 2016. 3. 3 and onward will have packaged versions available via EPEL.

WARNING: Fedora 19 comes with systemd 204. Systemd has known bugs fixed in later revisions that prevent the
salt-master from starting reliably or opening the network connections that it needs to. It's not likely that a salt-
master will start or run reliably on any distribution that uses systemd version 204 or earlier. Running salt-minions

should be OK.

Installation

Salt can be installed using yum and is available in the standard Fedora repositories.

Stable Release

Salt is packaged separately for the minion and the master. It is necessary only to install the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

yum install salt-master
yum install salt-minion

4 Chapter 1. Installation

http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
https://github.com/saltstack/salt-bootstrap
http://fedoraproject.org/wiki/EPEL

Salt Documentation, Release 2016.3.4

Installing from updates-testing

When a new Salt release is packaged, it is first admitted into the updates—-testing repository, before being
moved to the stable repo.

To install from updates-testing, use the enablerepo argument for yum:

yum --enablerepo=updates-testing install salt-master
yum -—-enablerepo=updates-testing install salt-minion

Installation Using pip

Since Salt is on PyP], it can be installed using pip, though most users prefer to install using a package manager.
Installing from pip has a few additional requirements:

« Install the group "Development Tools', dnf groupinstall 'Development Tools'

« Install the "zeromq-devel' package if it fails on linking against that afterwards as well.

A pip install does not make the init scripts or the /etc/salt directory, and you will need to provide your own systemd
service unit.

Installation from pip:

pip install salt

Warning: If installing from pip (or from source using setup.py install), be advised that the yum-utils
package is needed for Salt to manage packages. Also, if the Python dependencies are not already installed, then
you will need additional libraries/tools installed to build some of them. More information on this can be found
here.

Post-installation tasks

Master

To have the Master start automatically at boot time:

’systemctl enable salt-master.service

To start the Master:

’systemctl start salt-master.service

Minion

To have the Minion start automatically at boot time:

’systemctl enable salt-minion.service

To start the Minion:

’systemctl start salt-minion.service

Now go to the Configuring Salt page.

1.2. Platform-specific Installation Instructions 5

https://pypi.python.org/pypi/salt

Salt Documentation, Release 2016.3.4

1.2.4 FreeBSD

Installation

Salt is available in binary package form from both the FreeBSD pkgng repository or directly from SaltStack. The
instructions below outline installation via both methods:

FreeBSD repo

The FreeBSD pkgng repository is preconfigured on systems 10.x and above. No configuration is needed to pull from
these repositories.

pkg install py27-salt

These packages are usually available within a few days of upstream release.

SaltStack repo

SaltStack also hosts internal binary builds of the Salt package, available from https://repo.saltstack.com/freebsd/. To
make use of this repository, add the following file to your system:

/usr/local/etc/pkg/repos/saltstack.conf:

saltstack: {
url: "https://repo.saltstack.com/freebsd/${ABI}/",
enabled: yes

}

You should now be able to install Salt from this new repository:

pkg install py27-salt

These packages are usually available earlier than upstream FreeBSD. Also available are release candidates and de-
velopment releases. Use these pre-release packages with caution.

Post-installation tasks

Master

Copy the sample configuration file:

’cp Jusr/local/etc/salt/master.sample /usr/local/etc/salt/master

rc.conf

Activate the Salt Master in /etc/rc.conf:

’ sysrc salt_master_enable="YES"

Start the Master

Start the Salt Master as follows:

’service salt_master start

6 Chapter 1. Installation

https://repo.saltstack.com/freebsd/

Salt Documentation, Release 2016.3.4

Minion

Copy the sample configuration file:

’cp Jusr/local/etc/salt/minion.sample /usr/local/etc/salt/minion

rc.conf

Activate the Salt Minion in /etc/rc.conf:

’ sysrc salt_minion_enable="YES"

Start the Minion

Start the Salt Minion as follows:

’service salt_minion start

Now go to the Configuring Salt page.

1.2.5 Gentoo

Salt can be easily installed on Gentoo via Portage:

emerge app-admin/salt

Post-installation tasks

Now go to the Configuring Salt page.

1.2.6 OpenBSD

Salt was added to the OpenBSD ports tree on Aug 10th 2013. It has been tested on OpenBSD 5.5 onwards.

Salt is dependent on the following additional ports. These will be installed as dependencies of the sysutils/salt
port:

devel/py-futures
devel/py-progressbar
net/py-msgpack
net/py-zmq
security/py-crypto
security/py-M2Crypto
textproc/py-MarkupSafe
textproc/py-yaml
www/py-jinja2
www/py-requests

www /py-tornado

Installation

To install Salt from the OpenBSD pkg repo, use the command:

1.2. Platform-specific Installation Instructions 7

Salt Documentation, Release 2016.3.4

pkg_add salt

Post-installation tasks

Master

To have the Master start automatically at boot time:

’rcctl enable salt_master

To start the Master:

’rcctl start salt_master

Minion

To have the Minion start automatically at boot time:

’rcctl enable salt_minion

To start the Minion:

’rcctl start salt_minion

Now go to the Configuring Salt page.

1.2.7 OS X

Installation from the Official SaltStack Repository

Latest stable build from the selected branch:
The output of md5 <salt pkg> should match the contents of the corresponding md5 file.
Earlier builds from supported branches

Archived builds from unsupported branches

Installation from Homebrew

brew install saltstack

It should be noted that Homebrew explicitly discourages the use of sudo:

Homebrew is designed to work without using sudo. You can decide to use it but we strongly recommend
not to do so. If you have used sudo and run into a bug then it is likely to be the cause. Please don’t file
a bug report unless you can reproduce it after reinstalling Homebrew from scratch without using sudo

Installation from MacPorts

sudo port 1install salt

8 Chapter 1. Installation

https://repo.saltstack.com/osx/
https://repo.saltstack.com/osx/archive/
https://github.com/Homebrew/homebrew/blob/master/share/doc/homebrew/FAQ.md#sudo

Salt Documentation, Release 2016.3.4

Installation from Pip

When only using the OS X system's pip, install this way:

sudo pip install salt

Salt-Master Customizations

Note: Salt master on OS X is not tested or supported by SaltStack. See SaltStack Platform Support for more infor-
mation.

To run salt-master on OS X, sudo add this configuration option to the /etc/salt/master file:

’ max_open_files: 8192

On versions previous to OS X 10.10 (Yosemite), increase the root user maxfiles limit:

’sudo launchctl limit maxfiles 4096 8192

Note: On OS X 10.10 (Yosemite) and higher, maxfiles should not be adjusted. The default limits are sufficient in all
but the most extreme scenarios. Overriding these values with the setting below will cause system instability!

Now the salt-master should run without errors:

sudo salt-master --log-level=all

Post-installation tasks

Now go to the Configuring Salt page.

1.2.8 RHEL / CentOS / Scientific Linux / Amazon Linux / Oracle Linux

Salt should work properly with all mainstream derivatives of Red Hat Enterprise Linux, including CentOS, Scientific
Linux, Oracle Linux, and Amazon Linux. Report any bugs or issues on the issue tracker.

Installation from the Official SaltStack Repository

Packages for Redhat, CentOS, and Amazon Linux are available in the SaltStack Repository.
« Red Hat / CentOS

« Amazon Linux

Note: As of 2015.8.0, EPEL repository is no longer required for installing on RHEL systems. SaltStack repository
provides all needed dependencies.

1.2. Platform-specific Installation Instructions 9

https://saltstack.com/product-support-lifecycle/
https://github.com/saltstack/salt/issues
https://repo.saltstack.com/#rhel
https://repo.saltstack.com/#amzn

Salt Documentation, Release 2016.3.4

Warning: If installing on Red Hat Enterprise Linux 7 with disabled (not subscribed on) "RHEL Server Releases'
or 'RHEL Server Optional Channel' repositories, append CentOS 7 GPG key URL to SaltStack yum repository
configuration to install required base packages:

[saltstack-repo]
name=SaltStack repo for Red Hat Enterprise Linux S$releasever

baseurl=https://repo.saltstack.com/yum/redhat/$releasever/$bhasearch/latest
enabled=1

gpgcheck=1
gpgkey=https://repo.saltstack.com/yum/redhat/$releasever/Sbasearch/latest/SALTSTACK-
—GPG-KEY . pub

https://repo.saltstack.com/yum/redhat/$releasever/$bhasearch/latest/base/RPM-
—~GPG-KEY-Cent0S-7

Note: systemd and systemd-python are required by Salt, but are not installed by the Red Hat 7 @base
installation or by the Salt installation. These dependencies might need to be installed before Salt.

Installation from the Community-Maintained Repository

Beginning with version 0.9.4, Salt has been available in EPEL. For RHEL/CentOS 5, Fedora COPR is a single commu-
nity repository that provides Salt packages due to the removal from EPELS5.

Note: Packages in these repositories are built by community, and it can take a little while until the latest stable
SaltStack release become available.

RHEL/CentOS 6 and 7, Scientific Linux, etc.

Warning: Salt 2015.8 is currently not available in EPEL due to unsatisfied dependencies: python-crypto
2.6.1 or higher, and python-tornado version 4.2.1 or higher. These packages are not currently available in
EPEL for Red Hat Enterprise Linux 6 and 7.

Enabling EPEL

If the EPEL repository is not installed on your system, you can download the RPM for RHEL/CentOS 6 or for
RHEL/CentOS 7 and install it using the following command:

rpm -Uvh epel-release-X-Y.rpm

Replace epel-release-X-Y.rpm with the appropriate filename.

Installing Stable Release

Salt is packaged separately for the minion and the master. It is necessary to install only the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

« yum install salt-master

10 Chapter 1. Installation

http://fedoraproject.org/wiki/EPEL
https://copr.fedorainfracloud.org/coprs/saltstack/salt-el5/
http://download.fedoraproject.org/pub/epel/6/i386/repoview/epel-release.html
http://download.fedoraproject.org/pub/epel/7/x86_64/repoview/epel-release.html

Salt Documentation, Release 2016.3.4

« yum install salt-minion
« yum 1install salt-ssh
- yum install salt-syndic

« yum 1install salt-cloud

Installing from epel-testing

When a new Salt release is packaged, it is first admitted into the epel-testing repository, before being moved
to the stable EPEL repository.

To install from epel-testing, use the enablerepo argument for yum:

yum -—-enablerepo=epel-testing install salt-minion

Installation Using pip
Since Salt is on PyP]I, it can be installed using pip, though most users prefer to install using RPM packages (which
can be installed from EPEL).
Installing from pip has a few additional requirements:
« Install the group ‘Development Tools', yum groupinstall 'Development Tools'
« Install the "zeromq-devel' package if it fails on linking against that afterwards as well.

A pip install does not make the init scripts or the /etc/salt directory, and you will need to provide your own systemd
service unit.

Installation from pip:

pip install salt

Warning: If installing from pip (or from source using setup.py install), be advised that the yum-utils
package is needed for Salt to manage packages. Also, if the Python dependencies are not already installed, then
you will need additional libraries/tools installed to build some of them. More information on this can be found
here.

ZeroMQ 4

We recommend using ZeroMQ 4 where available. SaltStack provides ZeroMQ 4.0.5 and pyzmgq 14.5.0 in the SaltStack
Repository as well as a separate zeromq4 COPR repository.

If this repository is added before Salt is installed, then installing either salt-master or salt-minion will
automatically pull in ZeroMQ 4.0.5, and additional steps to upgrade ZeroMQ and pyzmgq are unnecessary.

Warning: RHEL/CentOS 5 Users Using COPR repos on RHEL/CentOS 5 requires that the python—hashlib
package be installed. Not having it present will result in checksum errors because YUM will not be able to process
the SHA256 checksums used by COPR.

1.2. Platform-specific Installation Instructions 11

https://pypi.python.org/pypi/salt
http://fedoraproject.org/wiki/EPEL
http://copr.fedorainfracloud.org/coprs/saltstack/zeromq4/

Salt Documentation, Release 2016.3.4

Note: For RHEL/CentOS 5 installations, if using the SaltStack repo or Fedora COPR to install Salt (as described
above), then it is not necessary to enable the zeromq4 COPR, because those repositories already include ZeroMQ 4.

Package Management

Salt's interface to yum makes heavy use of the repoquery utility, from the yum-utils package. This package will
be installed as a dependency if salt is installed via EPEL. However, if salt has been installed using pip, or a host is
being managed using salt-ssh, then as of version 2014.7.0 yum-utils will be installed automatically to satisfy this

dependency.
Post-installation tasks
Master

To have the Master start automatically at boot time:

RHEL/CentOS 5 and 6

’chkconﬁ'g salt-master on

RHEL/CentOS 7

’systemctl enable salt-master.service

To start the Master:
RHEL/CentOS 5 and 6

’service salt-master start

RHEL/CentOS 7

’systemctl start salt-master.service

Minion

To have the Minion start automatically at boot time:

RHEL/CentOS 5 and 6

’Chkconf'ig salt-minion on

RHEL/CentOS 7

’systemctl enable salt-minion.service

To start the Minion:

RHEL/CentOS 5 and 6

’service salt-minion start

RHEL/CentOS 7

12

Chapter 1. Installation

http://copr.fedorainfracloud.org/coprs/saltstack/zeromq4/
http://yum.baseurl.org/wiki/YumUtils
http://yum.baseurl.org/wiki/YumUtils

Salt Documentation, Release 2016.3.4

systemctl start salt-minion.service

Now go to the Configuring Salt page.

1.2.9 Solaris

Salt was added to the OpenCSW package repository in September of 2012 by Romeo Theriault <romeot@hawaii.edu>
at version 0.10.2 of Salt. It has mainly been tested on Solaris 10 (sparc), though it is built for and has been tested
minimally on Solaris 10 (x86), Solaris 9 (sparc/x86) and 11 (sparc/x86). (Please let me know if you're using it on these
platforms!) Most of the testing has also just focused on the minion, though it has verified that the master starts up
successfully on Solaris 10.

Comments and patches for better support on these platforms is very welcome.

As of version 0.10.4, Solaris is well supported under salt, with all of the following working well:
1. remote execution
2. grain detection

service control with SMF

‘pkg' states with “pkgadd' and “pkgutil' modules

cron modules/states

user and group modules/states

N gk »

shadow password management modules/states

Salt is dependent on the following additional packages. These will automatically be installed as dependencies of the
py_salt package:

« py_yaml

* py_pyzmq

« py_jinja2

« py_msgpack_python
* py_m2crypto

* py_crypto
+ python

Installation

To install Salt from the OpenCSW package repository you first need to install pkgutil assuming you don't already
have it installed:

On Solaris 10:

pkgadd -d http://get.opencsw.org/now

On Solaris 9:

wget http://mirror.opencsw.org/opencsw/pkgutil.pkg
pkgadd -d pkgutil.pkg all

1.2. Platform-specific Installation Instructions 13

mailto:romeot@hawaii.edu
http://www.opencsw.org/manual/for-administrators/getting-started.html

Salt Documentation, Release 2016.3.4

Once pkgutil is installed you'll need to edit it's config file /etc/opt/csw/pkgutil.conf to point it at the
unstable catalog:

- #mirror=http://mirror.opencsw.org/opencsw/testing
+ mirror=http://mirror.opencsw.org/opencsw/unstable

OK, time to install salt.

Update the catalog

root> /opt/csw/bin/pkgutil -U

Install salt

root> /opt/csw/bin/pkgutil -i -y py_salt

Minion Configuration

Now that salt is installed you can find it's configuration files in /etc/opt/csw/salt/.

You'll want to edit the minion config file to set the name of your salt master server:

- #master: salt
+ master: your-salt-server

If you would like to use pkgutil as the default package provider for your Solaris minions, you can do so using the
providers option in the minion config file.

You can now start the salt minion like so:

On Solaris 10:

’svcadm enable salt-minion

On Solaris 9:

’ /etc/init.d/salt-minion start

You should now be able to log onto the salt master and check to see if the salt-minion key is awaiting acceptance:

’salt—key -1 un

Accept the key:

’salt—key -a <your-salt-minion>

Run a simple test against the minion:

’ salt '<your-salt-minion>' test.ping

Troubleshooting

Logs are in /var/log/salt

14 Chapter 1. Installation

http://www.opencsw.org/manual/for-administrators/getting-started.html

Salt Documentation, Release 2016.3.4

1.2.10 Ubuntu

Installation from the Official SaltStack Repository

Packages for Ubuntu 16 (Xenial), Ubuntu 14 (Trusty), and Ubuntu 12 (Precise) are available in the SaltStack repository.

Instructions are at https://repo.saltstack.com/#ubuntu.

Installation from the Community-Maintained Repository

Packages for Ubuntu are also published in the saltstack PPA. If you have the add-apt-repository utility, you
can add the repository and import the key in one step:

sudo add-apt-repository ppa:saltstack/salt

In addition to the main repository, there are secondary repositories for each individual major release. These reposi-
tories receive security and point releases but will not upgrade to any subsequent major release. There are currently
several available repos: salt16, salt17, salt2014-1, salt2014-7, salt2015-5. For example to follow 2015.5.x releases:

’sudo add-apt-repository ppa:saltstack/salt2015-5

add-apt-repository: command not found?

The add-apt-repository command is not always present on Ubuntu systems. This can be fixed by installing
python-software-properties:

’sudo apt-get install python-software-properties

The following may be required as well:

’sudo apt-get install software-properties-common

Note that since Ubuntu 12.10 (Raring Ringtail), add-apt-repository is found in the software-properties-common
package, and is part of the base install. Thus, add—apt-repository should be able to be used out-of-the-box to
add the PPA.

Alternately, manually add the repository and import the PPA key with these commands:

echo deb http://ppa.launchpad.net/saltstack/salt/ubuntu "1lsb_release -sc’ main | sudol
—tee /etc/apt/sources.list.d/saltstack.list

wget -q -0- "http://keyserver.ubuntu.com:11371/pks/lookup?op=get&
—search=0x4759FA960E27COA6" | sudo apt-key add -

After adding the repository, update the package management database:

sudo apt-get update

Install Packages

Install the Salt master, minion or other packages from the repository with the apt-get command. These examples
each install one of Salt components, but more than one package name may be given at a time:

. apt-get install salt-api

1.2. Platform-specific Installation Instructions 15

https://repo.saltstack.com/#ubuntu

Salt Documentation, Release 2016.3.4

. apt-get install salt-cloud
. apt-get install salt-master
. apt-get dinstall salt-minion
. apt-get install salt-ssh

. apt-get install salt-syndic

Post-installation tasks

Now go to the Configuring Salt page.

1.2.11 Windows

Salt has full support for running the Salt Minion on Windows.

You must connect Windows Salt minions to a Salt master on a supported operating system to control your Salt
Minions.

Many of the standard Salt modules have been ported to work on Windows and many of the Salt States currently
work on Windows as well.

Installation from the Official SaltStack Repository

Latest stable build from the selected branch:
The output of md5sum <salt minion exe> should match the contents of the corresponding md5 file.
Earlier builds from supported branches

Archived builds from unsupported branches

Note: The installation executable installs dependencies that the Salt minion requires.

The 64bit installer has been tested on Windows 7 64bit and Windows Server 2008R2 64bit. The 32bit installer has
been tested on Windows 2008 Server 32bit. Please file a bug report on our GitHub repo if issues for other platforms
are found.

The installer asks for 2 bits of information; the master hostname and the minion name. The installer will update the
minion config with these options and then start the minion.

The salt-minion service will appear in the Windows Service Manager and can be started and stopped there or
with the command line program sc like any other Windows service.

sc start salt-minion
net start salt-minion

If the minion won't start, try installing the Microsoft Visual C++ 2008 x64 SP1 redistributable. Allow all Windows
updates to run salt-minion smoothly.

16 Chapter 1. Installation

https://repo.saltstack.com/windows/
https://repo.saltstack.com/windows/archive/

Salt Documentation, Release 2016.3.4

Installation Prerequisites

Most Salt functionality should work just fine right out of the box. A few Salt modules rely on PowerShell. The
minimum version of PowerShell required for Salt is version 3. If you intend to work with DSC then Powershell
version 5 is the minimum.

Silent Installer Options

The installer can be run silently by providing the /S option at the command line. The installer also accepts the
following options for configuring the Salt Minion silently:

Option Description

/minion-name= | A string value to set the minion name. Default is "hostname'

/master= A string value to set the IP address or host name of the master. Default value is salt.
/start- Either a 1 or 0. "1' will start the service, "0' will not. Default is to start the service after
service= installation.

Here's an example of using the silent installer:

Salt-Minion-2016.3.3-Setup-amd64.exe /S /master=yoursaltmaster /minion-
—name=yourminionname /start-service=0

Running the Salt Minion on Windows as an Unprivileged User

Notes:
« These instructions were tested with Windows Server 2008 R2

« They are generalizable to any version of Windows that supports a salt-minion

Create the Unprivileged User that the Salt Minion will Run As

1. Click Start > Control Panel > User Accounts.

2. Click Add or remove user accounts.

3. Click Create new account.

4. Enter salt-user (or a name of your preference) in the New account name field.
5. Select the Standard user radio button.

6. Click the Create Account button.

7. Click on the newly created user account.

8. Click the Create a password link.

9. In the New password and Confirm new password fields, provide a password (e.g * SuperSecretMin-
ionPassword4Me!").

10. In the Type a password hint field, provide appropriate text (e.g. **My Salt Password").
11. Click the Create password button.

12. Close the Change an Account window.

1.2. Platform-specific Installation Instructions 17

Salt Documentation, Release 2016.3.4

Add the New User to the Access Control List for the Salt Folder

O 0 I N U R WD

. In a File Explorer window, browse to the path where Salt is installed (the default path is C:\Salt).
. Right-click on the Sa'lt folder and select Properties.

. Click on the Security tab.

. Click the Ed1t button.

. Click the Add button.

. Type the name of your designated Salt user and click the OK button.

. Check the box to Allow the Modi fy permission.

. Click the OK button.

. Click the OK button to close the Salt Properties window.

Update the Windows Service User for the salt-minion Service

1.
2.

3
4.
5
6
7.

9.
10.

Click Start > Administrative Tools > Services.

In the Services list, right-click on salt-minion and select Properties.

. Click the Log On tab.

Click the This account radio button.

. Provide the account credentials created in section A.

. Click the OK button.

Click the OK button to the prompt confirming that the user has been granted the Log On As A
Service right.

. Click the OK button to the prompt confirming that The new logon name will not take effect

until you stop and restart the service
Right-Click on salt-minion and select Stop.

Right-Click on salt-minion and select Start.

Building and Developing on Windows

This document will explain how to set up a development environment for Salt on Windows. The development
environment allows you to work with the source code to customize or fix bugs. It will also allow you to build your
own installation.

There are several scripts to automate creating a Windows installer as well as setting up an environment that facilitates
developing and troubleshooting Salt code. They are located in the pkg\windows directory in the Salt repo (here).

18

Chapter 1. Installation

https://github.com/saltstack/salt/tree/develop/pkg/windows

Salt Documentation, Release 2016.3.4

Scripts:

Script Description

build_env.psl| A PowerShell script that sets up the build environment

build_pkg.bat| A batch file that builds a Windows installer based on the contents of the C: \Python27
directory

build.bat A batch file that fully automates the building of the Windows installer using the above two
scripts

Note: The build.bat and build_pkg.bat scripts both accept a single parameter to specify the version of Salt
that will be displayed in the Windows installer. If no version is passed, the version will be determined using git.

Prerequisite Software

The only prerequisite is Git for Windows.

Create a Build Environment
1. Working Directory

Create a Salt-Dev directory on the root of C:. This will be our working directory. Navigate to Salt-Dev and
clone the Salt repo from GitHub.

Open a command line and type:

cd \

md Salt-Dev

cd Salt-Dev

git clone https://github.com/saltstack/salt

Go into the salt directory and checkout the version of salt to work with (2016.3 or higher).

cd salt
git checkout 2016.3

2. Setup the Python Environment

Navigate to the pkg\windows directory and execute the build_env.ps1 PowerShell script.

cd pkg\windows
powershell -file build_env.psl

Note: You can also do this from Explorer by navigating to the pkg\windows directory, right clicking the
build_env.ps1 powershell script and selecting Run with PowerShell

This will download and install Python with all the dependencies needed to develop and build Salt.

1.2. Platform-specific Installation Instructions 19

https://git-scm.com/download/win/
https://github.com/saltstack/salt/

Salt Documentation, Release 2016.3.4

Note: If you get an error or the script fails to run you may need to change the execution policy. Open a powershell
window and type the following command:

Set-ExecutionPolicy RemoteSigned

3. Salt in Editable Mode

Editable mode allows you to more easily modify and test the source code. For more information see the Pip docu-
mentation.

Navigate to the root of the salt directory and install Salt in editable mode with pip

cd \Salt-Dev\salt
pip install -e .

Note: The . is important

Note: If pip is not recognized, you may need to restart your shell to get the updated path

4. Setup Salt Configuration

Salt requires a minion configuration file and a few other directories. The default config file is named minion located
inC:\salt\conf. The easiest way to set this up is to copy the contents of the salt\pkg\windows\buildenv
directory to C:\salt.

cd \
md salt
xcopy /s /e \Salt-Dev\salt\pkg\windows\buildenv* \salt)\

Now go into the C:\salt\conf directory and edit the file name minion (no extension). You need to configure
the master and id parameters in this file. Edit the following lines:

master: <ip or name of your master>
id: <name of your minion>

Create a Windows Installer

To create a Windows installer, follow steps 1 and 2 from Create a Build Environment above. Then proceed to 3 below:

3. Install Salt

To create the installer for Window we install Salt using Python instead of pip. Navigate to the root sa'lt directory
and install Salt.

cd \Salt-Dev\salt
python setup.py install

20 Chapter 1. Installation

https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs
https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs

Salt Documentation, Release 2016.3.4

4. Create the Windows Installer

Navigate to the pkg\windows directory and run the build_pkg.bat with the build version (2016.3) script.

cd pkg\windows
build_pkg.bat 2016.3

Note: If no version is passed, the build_pkg.bat will guess the version number using git.

Creating a Windows Installer: Alternate Method (Easier)

Clone the Salt repo from GitHub into the directory of your choice. We're going to use Salt-Dev.

cd \

md Salt-Dev

cd Salt-Dev

git clone https://github.com/saltstack/salt

Go into the salt directory and checkout the version of Salt you want to build.

cd salt
git checkout 2016.3

Then navigate to pkg\windows and run the build.bat script with the version you're building.

cd pkg\windows
build.bat 2016.3

This will install everything needed to build a Windows installer for Salt. The binary will be in the
salt\pkg\windows\installer directory.

Testing the Salt minion

1. Create the directory C: \sa'lt (if it doesn't exist already)
2. Copy the example conf and var directories from pkg\windows\buildenv into C:\salt

3. Edit C:\salt\conf\minion

master: +ipaddress or hostname of your salt-master

4. Start the salt-minion

cd C:\Python27\Scripts
python salt-minion -1 debug

5. On the salt-master accept the new minion's key

sudo salt-key -A

This accepts all unaccepted keys. If you're concerned about security just accept the key for this
specific minion.

6. Test that your minion is responding

1.2. Platform-specific Installation Instructions 21

https://github.com/saltstack/salt/

Salt Documentation, Release 2016.3.4

On the salt-master run:

sudo salt 'x' test.ping

You should get the following response: {'your minion hostname': True}

Packages Management Under Windows 2003

Windows Server 2003 and Windows XP have both reached End of Support. Though Salt is not officially supported
on operating systems that are EoL, some functionality may continue to work.

On Windows Server 2003, you need to install optional component **WMI Windows Installer Provider" to get a full
list of installed packages. If you don't have this, salt-minion can't report some installed software.

1.2.12 SUSE

Installation from the Official SaltStack Repository

Packages for SUSE 12 SP1, SUSE 12, SUSE 11, openSUSE 13 and openSUSE Leap 42.1 are available in the SaltStack
Repository.

Instructions are at https://repo.saltstack.com/#suse.

Installation from the SUSE Repository

Since openSUSE 13.2, Salt 2014.1.11 is available in the primary repositories. With the release of SUSE manager 3 a
new repository setup has been created. The new repo will by systemsmanagement:saltstack, which is the source for
newer stable packages. For backward compatibility a linkpackage will be created to the old devel:language:python

repo. All development of suse packages will be done in systemsmanagement:saltstack:testing. This will ensure that
salt will be in mainline suse repo's, a stable release repo and a testing repo for further enhancements.

Installation

Salt can be installed using zypper and is available in the standard openSUSE/SLES repositories.

Stable Release

Salt is packaged separately for the minion and the master. It is necessary only to install the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

zypper install salt-master
zypper install salt-minion

Post-installation tasks openSUSE

Master

To have the Master start automatically at boot time:

systemctl enable salt-master.service

22 Chapter 1. Installation

https://repo.saltstack.com/#suse

Salt Documentation, Release 2016.3.4

To start the Master:

’systemctl start salt-master.service

Minion

To have the Minion start automatically at boot time:

’systemctl enable salt-minion.service

To start the Minion:

’systemctl start salt-minion.service

Post-installation tasks SLES

Master

To have the Master start automatically at boot time:

’chkconﬁ'g salt-master on

To start the Master:

’ rcsalt-master start

Minion

To have the Minion start automatically at boot time:

’chkconf‘ig salt-minion on

To start the Minion:

’ rcsalt-minion start

Unstable Release

openSUSE

For openSUSE Tumbleweed run the following as root:

zypper refresh

zypper install salt salt-minion salt-master

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—openSUSE_Tumbleweed/systemsmanagement:saltstack.repo

For openSUSE 42.1 Leap run the following as root:

zypper refresh

zypper install salt salt-minion salt-master

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—openSUSE_Leap_42.1/systemsmanagement:saltstack.repo

For openSUSE 13.2 run the following as root:

1.2. Platform-specific Installation Instructions

23

Salt Documentation, Release 2016.3.4

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—openSUSE_13.2/systemsmanagement:saltstack.repo

zypper refresh

zypper install salt salt-minion salt-master

Suse Linux Enterprise

For SLE 12 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—SLE_12/systemsmanagement:saltstack.repo

zypper refresh

zypper install salt salt-minion salt-master

For SLE 11 SP4 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—SLE_11_SP4/systemsmanagement:saltstack.repo

zypper refresh

zypper install salt salt-minion salt-master

Now go to the Configuring Salt page.

1.3 Initial Configuration

1.3.1 Configuring Salt

Salt configuration is very simple. The default configuration for the master will work for most installations and the
only requirement for setting up a minion is to set the location of the master in the minion configuration file.

The configuration files will be installed to /etc/salt and are named after the respective components,
/etc/salt/master,and /etc/salt/minion.

Master Configuration

By default the Salt master listens on ports 4505 and 4506 on all interfaces (0.0.0.0). To bind Salt to a specific IP,
redefine the “interface" directive in the master configuration file, typically /etc/salt/master, as follows:

- #interface: 0.0.0.0
+ 1dinterface: 10.0.0.1

After updating the configuration file, restart the Salt master. See the master configuration reference for more details
about other configurable options.

Minion Configuration

Although there are many Salt Minion configuration options, configuring a Salt Minion is very simple. By default
a Salt Minion will try to connect to the DNS name " salt"; if the Minion is able to resolve that name correctly, no
configuration is needed.

24 Chapter 1. Installation

Salt Documentation, Release 2016.3.4

If the DNS name " “salt" does not resolve to point to the correct location of the Master, redefine the * “master" directive
in the minion configuration file, typically /etc/salt/minion, as follows:

- #master: salt
+ master: 10.0.0.1

After updating the configuration file, restart the Salt minion. See the minion configuration reference for more details
about other configurable options.

Running Salt

1. Start the master in the foreground (to daemonize the process, pass the -d flag):

’salt—master

2. Start the minion in the foreground (to daemonize the process, pass the -d flag):

’ salt-minion

Having trouble?

The simplest way to troubleshoot Salt is to run the master and minion in the foreground with log level set to
debug:

salt-master --log-level=debug

For information on salt's logging system please see the logging document.

Run as an unprivileged (non-root) user
To run Salt as another user, set the user parameter in the master config file.

Additionally, ownership, and permissions need to be set such that the desired user can read from and write to the
following directories (and their subdirectories, where applicable):

« /etc/salt

« /var/cache/salt
« /var/log/salt

« /var/run/salt

More information about running salt as a non-privileged user can be found here.

There is also a full troubleshooting guide available.

Key Identity

Salt provides commands to validate the identity of your Salt master and Salt minions before the initial key exchange.
Validating key identity helps avoid inadvertently connecting to the wrong Salt master, and helps prevent a potential
MiTM attack when establishing the initial connection.

1.3. Initial Configuration 25

Salt Documentation, Release 2016.3.4

Master Key Fingerprint

Print the master key fingerprint by running the following command on the Salt master:

salt-key -F master

Copy the master . pub fingerprint from the Local Keys section, and then set this value as the master_finger
in the minion configuration file. Save the configuration file and then restart the Salt minion.

Minion Key Fingerprint

Run the following command on each Salt minion to view the minion key fingerprint:

salt-call --local key.finger

Compare this value to the value that is displayed when you run the salt-key --finger <MINION_ID>
command on the Salt master.

Key Management

Salt uses AES encryption for all communication between the Master and the Minion. This ensures that the commands
sent to the Minions cannot be tampered with, and that communication between Master and Minion is authenticated
through trusted, accepted keys.

Before commands can be sent to a Minion, its key must be accepted on the Master. Run the salt-key command
to list the keys known to the Salt Master:

[root@master ~]# salt-key -L
Unaccepted Keys:

alpha

bravo

charlie

delta

Accepted Keys:

This example shows that the Salt Master is aware of four Minions, but none of the keys has been accepted. To accept
the keys and allow the Minions to be controlled by the Master, again use the salt-key command:

[root@master ~]# salt-key -A
[root@master ~]# salt-key -L
Unaccepted Keys:

Accepted Keys:

alpha

bravo

charlie

delta

The sa'lt-key command allows for signing keys individually or in bulk. The example above, using —A bulk-accepts
all pending keys. To accept keys individually use the lowercase of the same option, —a keyname.

See also:

salt-key manpage

26 Chapter 1. Installation

Salt Documentation, Release 2016.3.4

Sending Commands

Communication between the Master and a Minion may be verified by running the test.ping command:

[root@master ~]# salt alpha test.ping
alpha:
True

Communication between the Master and all Minions may be tested in a similar way:

[root@master ~]# salt '#' test.ping
alpha:
True
bravo:
True
charlie:
True
delta:
True

Each of the Minions should send a True response as shown above.

What's Next?

Understanding targeting is important. From there, depending on the way you wish to use Salt, you should also
proceed to learn about Remote Execution and Configuration Management.

1.4 Additional Installation Guides

1.4.1 Salt Bootstrap

The Salt Bootstrap script allows for a user to install the Salt Minion or Master on a variety of system distributions
and versions. This shell script known as bootstrap-salt.sh runs through a series of checks to determine
the operating system type and version. It then installs the Salt binaries using the appropriate methods. The Salt
Bootstrap script installs the minimum number of packages required to run Salt. This means that in the event you
run the bootstrap to install via package, Git will not be installed. Installing the minimum number of packages helps
ensure the script stays as lightweight as possible, assuming the user will install any other required packages after
the Salt binaries are present on the system. The script source is available on GitHub: https://github.com/saltstack/
salt-bootstrap

Supported Operating Systems

Note: In the event you do not see your distribution or version available please review the develop branch on GitHub
as it main contain updates that are not present in the stable release: https://github.com/saltstack/salt-bootstrap/tree/
develop

Debian and derivatives

« Debian GNU/Linux 7/8

1.4. Additional Installation Guides 27

https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap/tree/develop
https://github.com/saltstack/salt-bootstrap/tree/develop

Salt Documentation, Release 2016.3.4

« Linux Mint Debian Edition 1 (based on Debian 8)
« Kali Linux 1.0 (based on Debian 7)

Red Hat family

« Amazon Linux 2012.09/2013.03/2013.09/2014.03/2014.09
« CentOS 5/6/7

« Fedora 17/18/20/21/22

« Oracle Linux 5/6/7

Red Hat Enterprise Linux 5/6/7

Scientific Linux 5/6/7

SUSE family

« openSUSE 12/13

« openSUSE Leap 42

« openSUSE Tumbleweed 2015

» SUSE Linux Enterprise Server 11 SP1/11 SP2/11 SP3/12

Ubuntu and derivatives

Elementary OS 0.2 (based on Ubuntu 12.04)
Linaro 12.04

« Linux Mint 13/14/16/17
+ Trisquel GNU/Linux 6 (based on Ubuntu 12.04)

« Ubuntu 10.x/11.x/12.x/13.x/14.x/15.%/16.X

Other Linux distro

« Arch Linux

« Gentoo

UNIX systems

BSD:
« OpenBSD (pip installation)
« FreeBSD 9/10/11

SunOS:
« SmartOS

28 Chapter 1. Installation

Salt Documentation, Release 2016.3.4

Example Usage

If you're looking for the one-liner to install Salt, please scroll to the bottom and use the instructions for Installing via
an Insecure One-Liner

Note: In every two-step example, you would be well-served to examine the downloaded file and examine it to
ensure that it does what you expect.

The Salt Bootstrap script has a wide variety of options that can be passed as well as several ways of obtaining the
bootstrap script itself.

Note: These examples below show how to bootstrap Salt directly from GitHub or other Git repository. Run the
script without any parameters to get latest stable Salt packages for your system from SaltStack corporate repository.
See first example in the Install using wget section.

Install using curl

Using curl to install latest development version from GitHub:

curl -o bootstrap_salt.sh -L https://bootstrap.saltstack.com
sudo sh bootstrap_salt.sh git develop

If you want to install a specific release version (based on the Git tags):

curl -o bootstrap_salt.sh -L https://bootstrap.saltstack.com
sudo sh bootstrap_salt.sh git v2015.8.8

To install a specific branch from a Git fork:

curl -o bootstrap_salt.sh -L https://bootstrap.saltstack.com
sudo sh bootstrap_salt.sh -g https://github.com/myuser/salt.git git mybranch

If all you want is to install a salt-master using latest Git:

curl -o bootstrap_salt.sh -L https://bootstrap.saltstack.com
sudo sh bootstrap_salt.sh -M -N git develop

If your host has Internet access only via HTTP proxy:

PROXY="http://user:password@myproxy.example.com:3128"'
curl -o bootstrap_salt.sh -L -x "$PROXY" https://bootstrap.saltstack.com
sudo sh bootstrap_salt.sh -G -H "$PROXY" git

Install using wget

Using wget to install your distribution's stable packages:

wget -0 bootstrap_salt.sh https://bootstrap.saltstack.com
sudo sh bootstrap_salt.sh

Downloading the script from develop branch:

1.4. Additional Installation Guides 29

https://repo.saltstack.com/

Salt Documentation, Release 2016.3.4

wget -0 bootstrap_salt.sh https://bootstrap.saltstack.com/develop
sudo sh bootstrap_salt.sh

Installing a specific version from git using wget:

wget -0 bootstrap_salt.sh https://bootstrap.saltstack.com
sudo sh bootstrap_salt.sh -P git v2015.8.8

Note: On the above example we added -P which will allow PIP packages to be installed if required but it's not a
necessary flag for Git based bootstraps.

Install using Python

If you already have Python installed, python 2.6, then it's as easy as:

python -m urllib "https://bootstrap.saltstack.com" > bootstrap_salt.sh
sudo sh bootstrap_salt.sh git develop

All Python versions should support the following in-line code:

python -c 'import urllib; print urllib.urlopen("https://bootstrap.saltstack.com").
—read()"' > bootstrap_salt.sh
sudo sh bootstrap_salt.sh git develop

Install using fetch

On a FreeBSD base system you usually don't have either of the above binaries available. You do have fetch available
though:

fetch -o bootstrap_salt.sh https://bootstrap.saltstack.com
sudo sh bootstrap_salt.sh

If you have any SSL issues install ca_root_nssp:

’pkg install ca_root_nssp

And either copy the certificates to the place where fetch can find them:

’cp /usr/local/share/certs/ca-root-nss.crt /etc/ssl/cert.pem

Or link them to the right place:

’1n -s /usr/local/share/certs/ca-root-nss.crt /etc/ssl/cert.pem

Installing via an Insecure One-Liner

The following examples illustrate how to install Salt via a one-liner.

Note: Warning! These methods do not involve a verification step and assume that the delivered file is trustworthy.

30 Chapter 1. Installation

Salt Documentation, Release 2016.3.4

Any of the example above which use two-lines can be made to run in a single-line configuration with minor modi-
fications.

For example, using curl to install your distribution's stable packages:

curl -L https://bootstrap.saltstack.com | sudo sh

Using wge't to install your distribution's stable packages:

wget -0 - https://bootstrap.saltstack.com | sudo sh

Installing the latest develop branch of Salt:

curl -L https://bootstrap.saltstack.com | sudo sh -s -- git develop

Command Line Options

Here's a summary of the command line options:

$ sh bootstrap-salt.sh -h
Usage : bootstrap-salt.sh [options] <install-type> <install-type-args>

Installation types:
- stable (default)
- stable [version] (ubuntu specific)
- daily (ubuntu specific)
- testing (redhat specific)
- git

Examples:
- bootstrap-salt.sh
- bootstrap-salt.sh stable
- bootstrap-salt.sh stable 2014.7
- bootstrap-salt.sh daily
- bootstrap-salt.sh testing
- bootstrap-salt.sh git
- bootstrap-salt.sh git develop
- bootstrap-salt.sh git v0.17.0
- bootstrap-salt.sh git 8c3fadfl5ec183e5ce8c63739850d543617e4357

Options:
-h Display this message
-v Display script version
-n No colours.
-D Show debug output.
-c Temporary configuration directory
-g Salt repository URL. (default: git://github.com/saltstack/salt.git)
-G Instead of cloning from git://github.com/saltstack/salt.git, clone from https://
—github.com/saltstack/salt.git (Usually necessary on systems which have the regularlX
—git protocol port blocked, where https usually is not)
-k Temporary directory holding the minion keys which will pre-seed
the master.

-s Sleep time used when waiting for daemons to start, restart and when checking
for the services running. Default: 3

-M Also install salt-master

-S Also 1install salt-syndic

1.4. Additional Installation Guides 31

Salt Documentation, Release 2016.3.4

-N Do not install salt-minion

-X Do not start daemons after dinstallation

-C Only run the configuration function. This option automatically
bypasses any installation.

-P Allow pip based installations. On some distributions the required salt
packages or its dependencies are not available as a package for that
distribution. Using this flag allows the script to use pip as a last
resort method. NOTE: This only works for functions which actually
implement pip based installations.

-F Allow copied files to overwrite existing(config, init.d, etc)

-U If set, fully upgrade the system prior to bootstrapping salt

-K If set, keep the temporary files 1in the temporary directories specified
with -c and -k.

-I If set, allow insecure connections while downloading any files. For
example, pass '--no-check-certificate' to 'wget' or '--insecure' to 'curl'

-A Pass the salt-master DNS name or IP. This will be stored under
${BS_SALT_ETC_DIR}/minion.d/99-master-address.conf

-i Pass the salt-minion 1id. This will be stored under
${BS_SALT_ETC_DIR}/minion_id

-L Install the Apache Libcloud package if possible(required for salt-cloud)

-p Extra-package to install while installing salt dependencies. One package
per -p flag. You're responsible for providing the proper package name.

-d Disable check_service functions. Setting this flag disables the
"install_<distro>_check_services' checks. You can also do this by
touching /tmp/disable_salt_checks on the target host. Defaults ${BS_FALSE}

-H Use the specified http proxy for the +dinstallation

-Z Enable external software source for newer ZeroMQ(Only available for RHEL/CentOS/

--Fedora/Ubuntu based distributions)

-b Assume that dependencies are already 1installed and software sources are set up.

If git is selected, git tree is still checked out as dependency step.

1.4.2 Opening the Firewall up for Salt

The Salt master communicates with the minions using an AES-encrypted ZeroMQ connection. These communi-
cations are done over TCP ports 4505 and 4506, which need to be accessible on the master only. This document
outlines suggested firewall rules for allowing these incoming connections to the master.

Note: No firewall configuration needs to be done on Salt minions. These changes refer to the master only.

Fedora 18 and beyond / RHEL 7 / CentOS 7

Starting with Fedora 18 FirewallD is the tool that is used to dynamically manage the firewall rules on a host. It has
support for IPv4/6 settings and the separation of runtime and permanent configurations. To interact with FirewallD
use the command line client firewall-cmd.

firewall-cmd example:

’f'irewall—cmd --permanent --zone=<zone> --add-port=4505-4506/tcp

Please choose the desired zone according to your setup. Don't forget to reload after you made your changes.

’ firewall-cmd --reload

32 Chapter 1. Installation

https://fedoraproject.org/wiki/FirewallD

Salt Documentation, Release 2016.3.4

RHEL 6 / CentOS 6

The lokkit command packaged with some Linux distributions makes opening iptables firewall ports very simple
via the command line. Just be careful to not lock out access to the server by neglecting to open the ssh port.

lokkit example:

llokkit -p 22:tcp -p 4505:tcp -p 4506:tcp ‘

The system-config-firewall-tui command provides a text-based interface to modifying the firewall.

system-config-firewall-tui:

’ system-config-firewall-tui ‘

openSUSE

Salt installs firewall rules in /etc/sysconfig/SuSEfirewall2.d/services/salt. Enable with:

SuSEfirewall2 open
SuSEfirewall2 start

If you have an older package of Salt where the above configuration file is not included, the SUSEfirewall2
command makes opening iptables firewall ports very simple via the command line.

SuSEfirewall example:

SuSEfirewall2 open EXT TCP 4505
SuSEfirewall2 open EXT TCP 4506

The firewall module in YaST2 provides a text-based interface to modifying the firewall.

YaST?2:

yast2 firewall

iptables

Different Linux distributions store their iptables (also known as netfilter) rules in different places, which makes it
difficult to standardize firewall documentation. Included are some of the more common locations, but your mileage
may vary.

Fedora / RHEL / CentOS:

’ /etc/sysconfig/iptables ‘

Arch Linux:

’ /etc/iptables/iptables.rules ‘

Debian
Follow these instructions: https://wiki.debian.org/iptables

Once you've found your firewall rules, you'll need to add the two lines below to allow traffic on tcp/4505 and
tcp/4506:

1.4. Additional Installation Guides 33

https://github.com/saltstack/salt/blob/develop/pkg/suse/salt.SuSEfirewall2
http://www.netfilter.org/
https://wiki.debian.org/iptables

Salt Documentation, Release 2016.3.4

-A INPUT -m state --state new -m tcp -p tcp --dport 4505 -j ACCEPT
-A INPUT -m state --state new -m tcp -p tcp --dport 4506 -j ACCEPT

Ubuntu

Salt installs firewall rules in /etc/ufw/applications.d/salt.ufw. Enable with:

ufw allow salt

pf.conf

The BSD-family of operating systems uses packet filter (pf). The following example describes the additions to
pf.conf needed to access the Salt master.

pass 1in on S$int_if proto tcp from any to $int_if port 4505
pass 1in on $int_if proto tcp from any to $int_if port 4506

Once these additions have been made to the pf.conf the rules will need to be reloaded. This can be done using
the pfctl command.

pfctl -vf /etc/pf.conf

1.4.3 Whitelist communication to Master

There are situations where you want to selectively allow Minion traffic from specific hosts or networks into your Salt
Master. The first scenario which comes to mind is to prevent unwanted traffic to your Master out of security concerns,
but another scenario is to handle Minion upgrades when there are backwards incompatible changes between the
installed Salt versions in your environment.

Here is an example Linux iptables ruleset to be set on the Master:

Allow Minions from these networks

-I INPUT -s 10.1.2.0/24 -p tcp -m multiport --dports 4505,4506 -j ACCEPT
-I INPUT -s 10.1.3.0/24 -p tcp -m multiport --dports 4505,4506 -j ACCEPT
Allow Salt to communicate with Master on the loopback interface

-A INPUT -i lo -p tcp -m multiport --dports 4505,4506 -j ACCEPT

Reject everything else

-A INPUT -p tcp -m multiport --dports 4505,4506 -j REJECT

Note: The important thing to note here is that the salt command needs to communicate with the listening
network socket of salt-master on the loopback interface. Without this you will see no outgoing Salt traffic from
the master, even for a simple salt '*' test.ping, because the salt client never reached the salt-master
to tell it to carry out the execution.

1.4.4 Preseed Minion with Accepted Key

In some situations, it is not convenient to wait for a minion to start before accepting its key on the master. For
instance, you may want the minion to bootstrap itself as soon as it comes online. You may also want to to let your
developers provision new development machines on the fly.

See also:

34 Chapter 1. Installation

https://github.com/saltstack/salt/blob/develop/pkg/salt.ufw
http://openbsd.org/faq/pf/

Salt Documentation, Release 2016.3.4

Many ways to preseed minion keys
Salt has other ways to generate and pre-accept minion keys in addition to the manual steps outlined below.
salt-cloud performs these same steps automatically when new cloud VMs are created (unless instructed not to).

salt-api exposes an HTTP call to Salt's REST API to generate and download the new minion keys as
a tarball.

There is a general four step process to do this:

1. Generate the keys on the master:

’root@saltmaster# salt-key --gen-keys=[key_name]

Pick a name for the key, such as the minion's id.

2. Add the public key to the accepted minion folder:

’root@saltmaster# cp key_name.pub /etc/salt/pki/master/minions/[minion_1id]

It is necessary that the public key file has the same name as your minion id. This is how Salt matches minions with
their keys. Also note that the pki folder could be in a different location, depending on your OS or if specified in the
master config file.

3. Distribute the minion keys.

There is no single method to get the keypair to your minion. The difficulty is finding a dis-
tribution method which is secure. For Amazon EC2 only, an AWS best practice is to use IAM
Roles to pass credentials. (See blog post, http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/
Using-IAM-roles-to-distribute-non- AWS-credentials-to-your-EC2-instances)

Security Warning

Since the minion key is already accepted on the master, distributing the private key poses a potential security risk.
A malicious party will have access to your entire state tree and other sensitive data if they gain access to a preseeded
minion key.

4. Preseed the Minion with the keys

You will want to place the minion keys before starting the salt-minion daemon:

/etc/salt/pki/minion/minion.pem
/etc/salt/pki/minion/minion.pub

Once in place, you should be able to start salt-minion and run salt-call state.apply or any other salt
commands that require master authentication.

1.4.5 The MacOS X (Maverick) Developer Step By Step Guide To Salt Installation

This document provides a step-by-step guide to installing a Salt cluster consisting of one master, and one minion
running on a local VM hosted on Mac OS X.

Note: This guide is aimed at developers who wish to run Salt in a virtual machine. The official (Linux) walkthrough
can be found here.

1.4. Additional Installation Guides 35

http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/Using-IAM-roles-to-distribute-non-AWS-credentials-to-your-EC2-instances
http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/Using-IAM-roles-to-distribute-non-AWS-credentials-to-your-EC2-instances
http://docs.saltstack.com/topics/tutorials/walkthrough.html

Salt Documentation, Release 2016.3.4

The 5 Cent Salt Intro

Since you're here you've probably already heard about Salt, so you already know Salt lets you configure and run
commands on hordes of servers easily. Here's a brief overview of a Salt cluster:

« Salt works by having a *‘master" server sending commands to one or multiple ' ‘minion" servers '. The mas-
ter server is the *“command center". It is going to be the place where you store your configuration files, aka:
““which server is the db, which is the web server, and what libraries and software they should have installed".
The minions receive orders from the master. Minions are the servers actually performing work for your busi-
ness.

« Salt has two types of configuration files:

1. the *“salt communication channels" or *“meta" or " “config" configuration files (not official names): one for
the master (usually is /etc/salt/master , on the master server), and one for minions (default is /etc/salt/minion
or /etc/salt/minion.conf, on the minion servers). Those files are used to determine things like the Salt Master
IP, port, Salt folder locations, etc.. If these are configured incorrectly, your minions will probably be unable to
receive orders from the master, or the master will not know which software a given minion should install.

2. the ““business" or "“service" configuration files (once again, not an official name): these are configuration
files, ending with ".sls" extension, that describe which software should run on which server, along with par-
ticular configuration properties for the software that is being installed. These files should be created in the
/srv/salt folder by default, but their location can be changed using ... /etc/salt/master configuration file!

Note: This tutorial contains a third important configuration file, not to be confused with the previous two: the
virtual machine provisioning configuration file. This in itself is not specifically tied to Salt, but it also contains some
Salt configuration. More on that in step 3. Also note that all configuration files are YAML files. So indentation
matters.

Before Digging In, The Architecture Of The Salt Cluster

Salt Master

The " Salt master" server is going to be the Mac OS machine, directly. Commands will be run from a terminal app, so
Salt will need to be installed on the Mac. This is going to be more convenient for toying around with configuration

files.

Salt Minion

We'll only have one " *Salt minion" server. It is going to be running on a Virtual Machine running on the Mac, using
VirtualBox. It will run an Ubuntu distribution.

Step 1 - Configuring The Salt Master On Your Mac

official documentation

Because Salt has a lot of dependencies that are not built in Mac OS X, we will use Homebrew to install Salt. Homebrew
is a package manager for Mac, it's great, use it (for this tutorial at least!). Some people spend a lot of time installing
libs by hand to better understand dependencies, and then realize how useful a package manager is once they're
configuring a brand new machine and have to do it all over again. It also lets you uninstall things easily.

! Salt also works with *“masterless" configuration where a minion is autonomous (in which case salt can be seen as a local configuration tool),
or in ' 'multiple master" configuration. See the documentation for more on that.

36 Chapter 1. Installation

http://docs.saltstack.com/topics/installation/osx.html

Salt Documentation, Release 2016.3.4

Note: Brew is a Ruby program (Ruby is installed by default with your Mac). Brew downloads, compiles, and links
software. The linking phase is when compiled software is deployed on your machine. It may conflict with manually
installed software, especially in the /usr/local directory. It's ok, remove the manually installed version then refresh
the link by typing brew T1link 'packageName'. Brew has a brew doctor command that can help you
troubleshoot. It's a great command, use it often. Brew requires xcode command line tools. When you run brew the
first time it asks you to install them if they're not already on your system. Brew installs software in /usr/local/bin
(system bins are in /usr/bin). In order to use those bins you need your $PATH to search there first. Brew tells you if
your $PATH needs to be fixed.

Tip: Use the keyboard shortcut cmd + shift + period inthe "“open" Mac OS X dialog box to display hidden
files and folders, such as .profile.

Install Homebrew

Install Homebrew here http://brew.sh/ Or just type

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/
—install)"

Now type the following commands in your terminal (you may want to type brew doctor after each to make sure
everything's fine):

brew install python
brew install swig
brew install zmq

Note: zmgq is ZeroMQ. It's a fantastic library used for server to server network communication and is at the core of
Salt efficiency.

Install Salt

You should now have everything ready to launch this command:

pip install salt

Note: There should be noneed for sudo pip install salt. Brew installed Python for your user, so you should
have all the access. In case you would like to check, type which python to ensure that it's /usr/local/bin/python,
and which p1ip which should be /usr/local/bin/pip.

Now type python in a terminal then, import salt. There should be no errors. Now exit the Python terminal
using exit ().

Create The Master Configuration

If the default /etc/salt/master configuration file was not created, copy-paste it from here: http://docs.saltstack.com/
ref/configuration/examples.html#configuration-examples-master

1.4. Additional Installation Guides 37

http://brew.sh/
http://docs.saltstack.com/ref/configuration/examples.html#configuration-examples-master
http://docs.saltstack.com/ref/configuration/examples.html#configuration-examples-master

Salt Documentation, Release 2016.3.4

Note: /etc/salt/master is afile, not a folder.

Salt Master configuration changes. The Salt master needs a few customization to be able to run on Mac OS X:

sudo launchctl limit maxfiles 4096 8192

In the /etc/salt/master file, change max_open_files to 8192 (or just add the line: max_open_files: 8192 (no
quote) if it doesn't already exists).

You should now be able to launch the Salt master:

sudo salt-master --log-level=all

There should be no errors when running the above command.

Note: This command is supposed to be a daemon, but for toying around, we'll keep it running on a terminal to
monitor the activity.

Now that the master is set, let's configure a minion on a VM.

The Salt minion is going to run on a Virtual Machine. There are a lot of software options that let you run virtual
machines on a mac, But for this tutorial we're going to use VirtualBox. In addition to virtualBox, we will use Vagrant,
which allows you to create the base VM configuration.

Vagrant lets you build ready to use VM images, starting from an OS image and customizing it using " provisioners".
In our case, we'll use it to:

« Download the base Ubuntu image

« Install salt on that Ubuntu image (Salt is going to be the " “provisioner" for the VM).
+ Launch the VM

« SSH into the VM to debug

Stop the VM once you're done.

Install VirtualBox

Go get it here: https://www.virtualBox.org/wiki/Downloads (click on VirtualBox for OS X hosts => x86/amd64)

Install Vagrant
Go get it here: http://downloads.vagrantup.com/ and choose the latest version (1.3.5 at time of writing), then the

.dmg file. Double-click to install it. Make sure the vagrant command is found when run in the terminal. Type
vagrant. It should display a list of commands.

Create The Minion VM Folder

Create a folder in which you will store your minion's VM. In this tutorial, it's going to be a minion folder in the
$home directory.

cd Shome
mkdir minion

38 Chapter 1. Installation

https://www.virtualBox.org/wiki/Downloads
http://downloads.vagrantup.com/

Salt Documentation, Release 2016.3.4

Initialize Vagrant

From the minion folder, type

vagrant init

This command creates a default Vagrantfile configuration file. This configuration file will be used to pass configura-
tion parameters to the Salt provisioner in Step 3.

Import Precise64 Ubuntu Box

vagrant box add precise64 http://files.vagrantup.com/precise64.box

Note: This box is added at the global Vagrant level. You only need to do it once as each VM will use this same file.

Modify the Vagrantfile

Modify ./minion/Vagrantfile to use th precise64 box. Change the config.vm.box line to:

’conﬁ'g.vm.box = "precise64" ‘

Uncomment the line creating a host-only IP. This is the ip of your minion (you can change it to something else if
that IP is already in use):

’conf‘ig.vm.network :private_network, ip: "192.168.33.10" ‘

At this point you should have a VM that can run, although there won't be much in it. Let's check that.

Checking The VM

From the $home/minion folder type:

’vagrant up ‘

A log showing the VM booting should be present. Once it's done you'll be back to the terminal:

’ping 192.168.33.10 ‘

The VM should respond to your ping request.

Now log into the VM in ssh using Vagrant again:

’vagrant ssh ‘

You should see the shell prompt change to something similar to vagrant@precise64: ~$ meaning you're inside
the VM. From there, enter the following:

’p'ing 10.0.2.2 ‘

1.4. Additional Installation Guides 39

Salt Documentation, Release 2016.3.4

Note: That ip is the ip of your VM host (the Mac OS X OS). The number is a VirtualBox default and is displayed in
the log after the Vagrant ssh command. We'll use that IP to tell the minion where the Salt master is. Once you're
done, end the ssh session by typing exit.

It's now time to connect the VM to the salt master

Creating The Minion Configuration File

Create the /etc/salt/minion file. In that file, put the following lines, giving the ID for this minion, and the IP
of the master:

master: 10.0.2.2
id: 'minionl’'
file_client: remote

Minions authenticate with the master using keys. Keys are generated automatically if you don't provide one and
can accept them later on. However, this requires accepting the minion key every time the minion is destroyed or
created (which could be quite often). A better way is to create those keys in advance, feed them to the minion, and
authorize them once.

Preseed minion keys

From the minion folder on your Mac run:

sudo salt-key --gen-keys=minionl

This should create two files: minion1l.pem, and minion1.pub. Since those files have been created using sudo, but will
be used by vagrant, you need to change ownership:

sudo chown youruser:yourgroup minionl.pem
sudo chown youruser:yourgroup minionl.pub

Then copy the .pub file into the list of accepted minions:

sudo cp minionl.pub /etc/salt/pki/master/minions/minionl

Modify Vagrantfile to Use Salt Provisioner

Let's now modify the Vagrantfile used to provision the Salt VM. Add the following section in the Vagrantfile (note:
it should be at the same indentation level as the other properties):

salt-vagrant config
config.vm.provision :salt do |salt]
salt.run_highstate = true

salt.minion_config = "/etc/salt/minion"
salt.minion_key = "./minionl.pem"
salt.minion_pub = "./minionl.pub"

end

Now destroy the vm and recreate it from the /minion folder:

40 Chapter 1. Installation

Salt Documentation, Release 2016.3.4

vagrant destroy
vagrant up

If everything is fine you should see the following message:

"Bootstrapping Salt... (this may take a while)
Salt successfully configured and installed!"

Checking Master-Minion Communication

To make sure the master and minion are talking to each other, enter the following:

sudo salt 'x' test.ping

You should see your minion answering the ping. It's now time to do some configuration.

In this step we'll use the Salt master to instruct our minion to install Nginx.

Checking the system's original state

First, make sure that an HTTP server is not installed on our minion. When opening a browser directed at
http://192.168.33.10/ You should get an error saying the site cannot be reached.

Initialize the top.sls file

System configuration is done in /srv/salt/top.sls (and subfiles/folders), and then applied by running the
state.apply function to have the Salt master order its minions to update their instructions and run the associated
commands.

First Create an empty file on your Salt master (Mac OS X machine):

’ touch /srv/salt/top.sls

When the file is empty, or if no configuration is found for our minion an error is reported:

’sudo salt 'minionl' state.apply

This should return an error stating: No Top file or external nodes data matches found.

Create The Nginx Configuration

Now is finally the time to enter the real meat of our server's configuration. For this tutorial our minion will be treated
as a web server that needs to have Nginx installed.

Insert the following lines into /srv/salt/top.sls (which should current be empty).

base:
'minionl’':
- bin.nginx

Now create /srv/salt/bin/nginx.sls containing the following:

1.4. Additional Installation Guides 41

Salt Documentation, Release 2016.3.4

nginx:
pkg.installed:
- name: nginx
service.running:
- enable: True
- reload: True

Check Minion State

Finally, run the state.apply function again:

sudo salt 'minionl' state.apply

You should see a log showing that the Nginx package has been installed and the service configured. To prove it,
open your browser and navigate to http://192.168.33.10/, you should see the standard Nginx welcome page.

Congratulations!
Where To Go From Here

A full description of configuration management within Salt (sls files among other things) is available here: http:
//docs.saltstack.com/en/latest/index.html#configuration-management

1.4.6 running salt as normal user tutorial

Before continuing make sure you have a working Salt installation by following the installation and the configuration
instructions.

Stuck?

There are many ways to get help from the Salt community including our mailing list and our IRC channel #salt.

Running Salt functions as non root user

If you don't want to run salt cloud as root or even install it you can configure it to have a virtual root in your working
directory.

The salt system uses the salt.syspath module to find the variables

If you run the salt-build, it will generated in:

’ ./build/lib.linux-x86_64-2.7/salt/_syspaths.py

To generate it, run the command:

’python setup.py build

Copy the generated module into your salt directory

’cp ./build/lib.linux-x86_64-2.7/salt/_syspaths.py salt/_syspaths.py

Edit it to include needed variables and your new paths

42 Chapter 1. Installation

http://192.168.33.10/
http://docs.saltstack.com/en/latest/index.html#configuration-management
http://docs.saltstack.com/en/latest/index.html#configuration-management
https://groups.google.com/forum/#!forum/salt-users
http://webchat.freenode.net/?channels=salt

Salt Documentation, Release 2016.3.4

you need to edit this
ROOT_DIR = *your current dir* + '/salt/root'

you need to edit this
INSTALL_DIR = xlocation of source codex

CONFIG_DIR = ROOT_DIR + '/etc/salt'

CACHE_DIR = ROOT_DIR + '/var/cache/salt'

SOCK_DIR = ROOT_DIR + '/var/run/salt'

SRV_ROOT_DIR= ROOT_DIR + '/srv'

BASE_FILE_ROOTS_DIR = ROOT_DIR + '/srv/salt'
BASE_PILLAR_ROOTS_DIR = ROOT_DIR + '/srv/pillar'
BASE_MASTER_ROOTS_DIR = ROOT_DIR + '/srv/salt-master'
LOGS_DIR = ROOT_DIR + '/var/log/salt'

PIDFILE_DIR = ROOT_DIR + '/var/run'

CLOUD_DIR = INSTALL_DIR + '/c'loud'

BOOTSTRAP = CLOUD_DIR + '/deploy/bootstrap-salt.sh'

Create the directory structure

mkdir -p root/etc/salt root/var/cache/run root/run/salt root/srv
root/srv/salt root/srv/pillar root/srv/salt-master root/var/log/salt root/var/run

Populate the configuration files:

’cp -r conf/x root/etc/salt/

Edit your root/etc/salt/master configuration that is used by salt-cloud:

’user: kyour user namex

Run like this:

’ PYTHONPATH="pwd" scripts/salt-cloud

1.4.7 Standalone Minion
Since the Salt minion contains such extensive functionality it can be useful to run it standalone. A standalone minion
can be used to do a number of things:

« Use salt-call commands on a system without connectivity to a master

« Masterless States, run states entirely from files local to the minion

Note: When running Salt in masterless mode, do not run the salt-minion daemon. Otherwise, it will attempt to
connect to a master and fail. The salt-call command stands on its own and does not need the salt-minion daemon.

Minion Configuration

Throughout this document there are several references to setting different options to configure a masterless Minion.
Salt Minions are easy to configure via a configuration file that is located, by default, in /etc/salt/minion. Note,
however, that on FreeBSD systems, the minion configuration file is located in /usr/local/etc/salt/minion.

You can learn more about minion configuration options in the Configuring the Salt Minion docs.

1.4. Additional Installation Guides 43

Salt Documentation, Release 2016.3.4

Telling Salt Call to Run Masterless

The salt-call command is used to run module functions locally on a minion instead of executing them from the
master. Normally the salt-call command checks into the master to retrieve file server and pillar data, but when
running standalone salt-call needs to be instructed to not check the master for this data. To instruct the minion to
not look for a master when running salt-call the file_client configuration option needs to be set. By default
the file_client is set to remote so that the minion knows that file server and pillar data are to be gathered
from the master. When setting the file_client option to Local the minion is configured to not gather this
data from the master.

file_client: local

Now the salt-call command will not look for a master and will assume that the local system has all of the file and
pillar resources.

Running States Masterless

The state system can be easily run without a Salt master, with all needed files local to the minion. To do this the
minion configuration file needs to be set up to know how to return file_roots information like the master. The
file_roots setting defaults to /srv/salt for the base environment just like on the master:

file_roots:
base:
- /srv/salt

Now set up the Salt State Tree, top file, and SLS modules in the same way that they would be set up on a master.
Now, with the file_client option set to Local and an available state tree then calls to functions in the state
module will use the information in the file_roots on the minion instead of checking in with the master.

Remember that when creating a state tree on a minion there are no syntax or path changes needed, SLS modules
written to be used from a master do not need to be modified in any way to work with a minion.

This makes it easy to " “script" deployments with Salt states without having to set up a master, and allows for these
SLS modules to be easily moved into a Salt master as the deployment grows.

The declared state can now be executed with:

’ salt-call state.apply

Or the salt-call command can be executed with the ——Tlocal flag, this makes it unnecessary to change the config-
uration file:

’salt—call state.apply --local

External Pillars

External pillars are supported when running in masterless mode.

1.4.8 Salt Masterless Quickstart

Running a masterless salt-minion lets you use Salt's configuration management for a single machine without calling
out to a Salt master on another machine.

44 Chapter 1. Installation

Salt Documentation, Release 2016.3.4

Since the Salt minion contains such extensive functionality it can be useful to run it standalone. A standalone minion
can be used to do a number of things:

« Stand up a master server via States (Salting a Salt Master)
« Use salt-call commands on a system without connectivity to a master
« Masterless States, run states entirely from files local to the minion

It is also useful for testing out state trees before deploying to a production setup.

Bootstrap Salt Minion

The salt-bootstrap script makes bootstrapping a server with Salt simple for any OS with a Bourne shell:

curl -L https://bootstrap.saltstack.com -o bootstrap_salt.sh
sudo sh bootstrap_salt.sh

See the salt-bootstrap documentation for other one liners. When using Vagrant to test out salt, the Vagrant salt
provisioner will provision the VM for you.

Telling Salt to Run Masterless

To instruct the minion to not look for a master, the file_client configuration option needs to be set in the
minion configuration file. By default the file_client is set to remote so that the minion gathers file server
and pillar data from the salt master. When setting the file_client option to Local the minion is configured to
not gather this data from the master.

file_client: local

Now the salt minion will not look for a master and will assume that the local system has all of the file and pillar
resources.

Configuration which resided in the master configuration (e.g. /etc/salt/master)should be moved to the minion
configuration since the minion does not read the master configuration.

Note: When running Salt in masterless mode, do not run the salt-minion daemon. Otherwise, it will attempt to
connect to a master and fail. The salt-call command stands on its own and does not need the salt-minion daemon.

Create State Tree
Following the successful installation of a salt-minion, the next step is to create a state tree, which is where the SLS
files that comprise the possible states of the minion are stored.

The following example walks through the steps necessary to create a state tree that ensures that the server has the
Apache webserver installed.

Note: For a complete explanation on Salt States, see the tutorial.

1. Create the top.sls file:
/srv/salt/top.sls:

1.4. Additional Installation Guides 45

https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap
http://www.vagrantup.com/
http://docs.vagrantup.com/v2/provisioning/salt.html
http://docs.vagrantup.com/v2/provisioning/salt.html
http://docs.saltstack.com/en/latest/topics/tutorials/states_pt1.html

Salt Documentation, Release 2016.3.4

base:
I*I:

- webserver

2. Create the webserver state tree:

/srv/salt/webserver.sls:

apache: # ID declaration
pkg: # state declaration
- installed # function declaration

Note: The apache package has different names on different platforms, for instance on Debian/Ubuntu it is apache2,
on Fedora/RHEL it is httpd and on Arch it is apache

The only thing left is to provision our minion using salt-call.

Salt-call

The salt-call command is used to run remote execution functions locally on a minion instead of executing them from
the master. Normally the salt-call command checks into the master to retrieve file server and pillar data, but when
running standalone salt-call needs to be instructed to not check the master for this data:

salt-call --local state.apply

The —-local flag tells the salt-minion to look for the state tree in the local file system and not to contact a Salt
Master for instructions.

To provide verbose output, use -1 debug:

salt-call --local state.apply -1 debug

The minion first examines the top . ss file and determines that it is a part of the group matched by * glob and that
the webserver SLS should be applied.

It then examines the webserver . sls file and finds the apache state, which installs the Apache package.

The minion should now have Apache installed, and the next step is to begin learning how to write more complex
states.

1.5 Dependencies

Salt should run on any Unix-like platform so long as the dependencies are met.

« Python 2.6 >= 2.6 <3.0

msgpack-python - High-performance message interchange format

« YAML - Python YAML bindings

« Jinja2 - parsing Salt States (configurable in the master settings)

+ MarkupSafe - Implements a XML/HTML/XHTML Markup safe string for Python

apache-libcloud - Python lib for interacting with many of the popular cloud service providers using a unified
API

46 Chapter 1. Installation

http://python.org/download/
https://pypi.python.org/pypi/msgpack-python/
http://pyyaml.org/
http://jinja.pocoo.org/
https://pypi.python.org/pypi/MarkupSafe
http://libcloud.apache.org

Salt Documentation, Release 2016.3.4

« Requests - HTTP library
« Tornado - Web framework and asynchronous networking library
« futures - Backport of the concurrent.futures package from Python 3.2
Depending on the chosen Salt transport, ZeroMQ or RAET, dependencies vary:
« ZeroMQ:
- ZeroMQ >=3.2.0
- pyzmgq >= 2.2.0 - ZeroMQ Python bindings
— PyCrypto - The Python cryptography toolkit
« RAET:
— libnacl - Python bindings to libsodium
— ioflo - The flo programming interface raet and salt-raet is built on
— RAET - The worlds most awesome UDP protocol

Salt defaults to the ZeroMQ transport, and the choice can be made at install time, for example:

’python setup.py --salt-transport=raet install

This way, only the required dependencies are pulled by the setup script if need be.

If installing using pip, the ——salt-transport install option can be provided like:

’p'ip install --install-option="--salt-transport=raet" salt

Note: Salt does not bundle dependencies that are typically distributed as part of the base OS. If you have unmet
dependencies and are using a custom or minimal installation, you might need to install some additional packages
from your OS vendor.

1.6 Optional Dependencies

« mako - an optional parser for Salt States (configurable in the master settings)

« gcc - dynamic Cython module compiling

1.7 Upgrading Salt

When upgrading Salt, the master(s) should always be upgraded first. Backward compatibility for minions running
newer versions of salt than their masters is not guaranteed.

Whenever possible, backward compatibility between new masters and old minions will be preserved. Generally, the
only exception to this policy is in case of a security vulnerability.

See also:

Installing Salt for development and contributing to the project.

1.6. Optional Dependencies 47

http://docs.python-requests.org/en/latest
http://www.tornadoweb.org/en/stable/
https://github.com/agronholm/pythonfutures
http://zeromq.org/
https://github.com/saltstack/raet
http://zeromq.org/
https://github.com/zeromq/pyzmq
https://www.dlitz.net/software/pycrypto/
https://github.com/saltstack/libnacl
https://github.com/jedisct1/libsodium
https://github.com/ioflo/ioflo
https://github.com/saltstack/raet
http://zeromq.org/
http://www.makotemplates.org/
http://cython.org/

Salt Documentation, Release 2016.3.4

1.8 Building Packages using Salt Pack

Salt-pack is an open-source package builder for most commonly used Linux platforms, for example: Redhat/CentOS
and Debian/Ubuntu families, utilizing SaltStack states and execution modules to build Salt and a specified set of
dependencies, from which a platform specific repository can be built.

https://github.com/saltstack/salt-pack

48 Chapter 1. Installation

https://github.com/saltstack/salt-pack

CHAPTER 2

Configuring Salt

This section explains how to configure user access, view and store job results, secure and troubleshoot, and how to
perform many other administrative tasks.

2.1 Configuring the Salt Master

The Salt system is amazingly simple and easy to configure, the two components of the Salt system each have a
respective configuration file. The salt-master is configured via the master configuration file, and the salt-
minion is configured via the minion configuration file.

See also:
Example master configuration file.

The configuration file for the salt-master is located at /etc/salt/master by default. A notable exception is
FreeBSD, where the configuration file is located at /usr/local/etc/salt. The available options are as follows:

2.1.1 Primary Master Configuration

interface

Default: 0.0.0. 0 (all interfaces)

The local interface to bind to.

interface: 192.168.0.1

ipv6

Default: False

Whether the master should listen for IPv6 connections. If this is set to True, the interface option must be adjusted
too (for example: " interface: "::'"')

ipv6e: True

49

Salt Documentation, Release 2016.3.4

publish_port

Default: 4505

The network port to set up the publication interface.

publish_port: 4505

master_id

Default: None

The id to be passed in the publish job to minions. This is used for MultiSyndics to return the job to the requesting
master.

Note: This must be the same string as the syndic is configured with.

master_id: MasterOfMaster

user

Default: root

The user to run the Salt processes

user: root

max_open_files

Default: 100000

Each minion connecting to the master uses AT LEAST one file descriptor, the master subscription connection. If
enough minions connect you might start seeing on the console(and then salt-master crashes):

Too many open files (tcp_listener.cpp:335)
Aborted (core dumped)

max_open_files: 100000

By default this value will be the one of ulimit -Hn, i.e., the hard limit for max open files.

To set a different value than the default one, uncomment, and configure this setting. Remember that this value
CANNOT be higher than the hard limit. Raising the hard limit depends on the OS and/or distribution, a good way
to find the limit is to search the internet for something like this:

raise max open files hard limit debian

worker_threads

Default: 5

50 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

The number of threads to start for receiving commands and replies from minions. If minions are stalling on replies
because you have many minions, raise the worker_threads value.

Worker threads should not be put below 3 when using the peer system, but can drop down to 1 worker otherwise.

Note: When the master daemon starts, it is expected behaviour to see multiple salt-master processes, even if
“worker_threads' is set to "1 At a minimum, a controlling process will start along with a Publisher, an EventPub-
lisher, and a number of MWorker processes will be started. The number of MWorker processes is tuneable by the
“worker_threads' configuration value while the others are not.

worker_threads: 5

ret_port

Default: 4506

The port used by the return server, this is the server used by Salt to receive execution returns and command execu-
tions.

ret_port: 4506

pidfile

Default: /var/run/salt-master.pid

Specify the location of the master pidfile.

pidfile: /var/run/salt-master.pid

root_d1ir

Default: /

The system root directory to operate from, change this to make Salt run from an alternative root.

root_dir: /

Note: This directory is prepended to the following options: pki_dir, cachedir, sock_dir, log_file,
autosign_file,autoreject_file,pidfile.

conf_file

Default: /etc/salt/master

The path to the master's configuration file.

conf_file: /etc/salt/master

2.1. Configuring the Salt Master 51

Salt Documentation, Release 2016.3.4

pki_dir

Default: /etc/salt/pki/master

The directory to store the pki authentication keys.

pki_dir: /etc/salt/pki/master

extension_modules

Changed in version 2016.3.0: The default location for this directory has been moved. Prior to this version, the location
was a directory named extmods in the Salt cachedir (on most platforms, /var/cache/salt/extmods). It has
been moved into the master cachedir (on most platforms, /var/cache/salt/master/extmods).

Directory for custom modules. This directory can contain subdirectories for each of Salt's module types such as run-
ners, output, wheel, modules, states, returners, engines, etc. This path is appended to root_dir.

extension_modules: /root/salt_extmods

module_dirs

Default: []

Like extension_modules, but a list of extra directories to search for Salt modules.

module_dirs:
- /var/cache/salt/minion/extmods

cachedir

Default: /var/cache/salt/master
The location used to store cache information, particularly the job information for executed salt commands.

This directory may contain sensitive data and should be protected accordingly.

cachedir: /var/cache/salt/master

verify_env

Default: True

Verify and set permissions on configuration directories at startup.

verify_env: True

keep_jobs

Default: 24

Set the number of hours to keep old job information. Note that setting this option to © disables the cache cleaner.

52 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

keep_jobs: 24

gather_job_timeout

New in version 2014.7.0.
Default: 10

The number of seconds to wait when the client is requesting information about running jobs.

gather_job_timeout: 10

timeout

Default: 5

Set the default timeout for the salt command and api.

loop_1interval

Default: 60

The loop_interval option controls the seconds for the master's maintenance process check cycle. This process updates
file server backends, cleans the job cache and executes the scheduler.

output

Default: nested

Set the default outputter used by the salt command.

output_file

Default: None

Set the default output file used by the salt command. Default is to output to the CLI and not to a file. Functions the
same way as the *"--out-file" CLI option, only sets this to a single file for all salt commands.

output_file: /path/output/file

color

Default: True

By default output is colored, to disable colored output set the color value to False.

color: False

2.1. Configuring the Salt Master 53

Salt Documentation, Release 2016.3.4

cli_summary

Default: False

When set to True, displays a summary of the number of minions targeted, the number of minions returned, and
the number of minions that did not return.

cli_summary: False

sock_dir

Default: /var/run/salt/master

Set the location to use for creating Unix sockets for master process communication.

sock_dir: /var/run/salt/master

enable_gpu_grains

Default: True

Enable GPU hardware data for your master. Be aware that the master can take a while to start up when Ispci and/or
dmidecode is used to populate the grains for the master.

job_cache

Default: True

The master maintains a temporary job cache. While this is a great addition, it can be a burden on the master for
larger deployments (over 5000 minions). Disabling the job cache will make previously executed jobs unavailable to
the jobs system and is not generally recommended. Normally it is wise to make sure the master has access to a faster
IO system or a tmpfs is mounted to the jobs dir.

job_cache: True

Note: Setting the job_cache to False will not cache minion returns, but the JID directory for each job is still
created. The creation of the JID directories is necessary because Salt uses those directories to check for JID colli-
sions. By setting this option to False, the job cache directory, which is /var/cache/salt/master/jobs/
by default, will be smaller, but the JID directories will still be present.

Note that the keep_ jobs option can be set to a lower value, such as 1, to limit the number of hours jobs are stored
in the job cache. (The default is 24 hours.)

Please see the Managing the Job Cache documentation for more information.

minion_data_cache

Default: True

The minion data cache is a cache of information about the minions stored on the master, this information is primarily
the pillar and grains data. The data is cached in the Master cachedir under the name of the minion and used to
predetermine what minions are expected to reply from executions.

54 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

minion_data_cache: True

ext_job_cache

Default: ''

Used to specify a default returner for all minions. When this option is set, the specified returner needs to be properly
configured and the minions will always default to sending returns to this returner. This will also disable the local
job cache on the master.

ext_job_cache: redis

event_return

New in version 2015.5.0.
Default: ''

Specify the returner to use to log events. A returner may have installation and configuration requirements. Read
the returner's documentation.

Note: Not all returners support event returns. Verify that a returner has an event_return() function before
configuring this option with a returner.

event_return: cassandra_cql

event_return_queue

New in version 2015.5.0.
Default: 0

On busy systems, enabling event_returns can cause a considerable load on the storage system for returners. Events
can be queued on the master and stored in a batched fashion using a single transaction for multiple events. By
default, events are not queued.

event_return_queue: 0

event_return_whitelist

New in version 2015.5.0.
Default: []

Only return events matching tags in a whitelist.

event_return_whitelist:
- salt/master/a_tag
- salt/master/another_tag

2.1. Configuring the Salt Master 55

Salt Documentation, Release 2016.3.4

event_return_blacklist

New in version 2015.5.0.
Default: []

Store all event returns _except_ the tags in a blacklist.

event_return_blacklist:
- salt/master/not_this_tag
- salt/master/or_this_one

max_event_size

New in version 2014.7.0.
Default: 1048576

Passing very large events can cause the minion to consume large amounts of memory. This value tunes the maximum
size of a message allowed onto the master event bus. The value is expressed in bytes.

max_event_size: 1048576

master_job_cache

New in version 2014.7.0.
Default: local_cache

Specify the returner to use for the job cache. The job cache will only be interacted with from the salt master and
therefore does not need to be accessible from the minions.

master_job_cache: redis

enforce_mine_cache

Default: False

By-default when disabling the minion_data_cache mine will stop working since it is based on cached data, by en-
abling this option we explicitly enabling only the cache for the mine system.

enforce_mine_cache: False

max_minions

Default: 0

The maximum number of minion connections allowed by the master. Use this to accommodate the number of
minions per master if you have different types of hardware serving your minions. The default of ® means unlimited
connections. Please note that this can slow down the authentication process a bit in large setups.

max_minions: 100

56 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

con_cache

Default: False

If max_minions is used in large installations, the master might experience high-load situations because of having to
check the number of connected minions for every authentication. This cache provides the minion-ids of all connected
minions to all MWorker-processes and greatly improves the performance of max_minions.

con_cache: True

presence_events

Default: False

Causes the master to periodically look for actively connected minions. Presence events are fired on the event bus on
a regular interval with a list of connected minions, as well as events with lists of newly connected or disconnected
minjons. This is a master-only operation that does not send executions to minions. Note, this does not detect minions
that connect to a master via localhost.

presence_events: False

transport

Default: zeromq

Changes the underlying transport layer. ZeroMQ is the recommended transport while additional transport layers are
under development. Supported values are zeromq, raet (experimental), and tcp (experimental). This setting has
a significant impact on performance and should not be changed unless you know what you are doing! Transports
are explained in Salt Transports.

transport: zeromqg

transport_opts

Default: {}

(experimental) Starts multiple transports and overrides options for each transport with the provided dictionary This
setting has a significant impact on performance and should not be changed unless you know what you are doing!
Transports are explained in Salt Transports. The following example shows how to start a TCP transport alongside a
ZMQ transport.

transport_opts:
tcp:
publish_port: 4605
ret_port: 4606
zeromq: []

2.1.2 Salt-SSH Configuration

roster_file

Default: /etc/salt/roster

2.1. Configuring the Salt Master 57

Salt Documentation, Release 2016.3.4

Pass in an alternative location for the salt-ssh roster file.

roster_file: /root/roster

ssh_minion_opts

Default: None

Pass in minion option overrides that will be inserted into the SHIM for salt-ssh calls. The local minion config is not
used for salt-ssh. Can be overridden on a per-minion basis in the roster (ninion_opts)

minion_opts:
gpg_keydir: /root/gpg

thin_extra_mods

Default: None

List of additional modules, needed to be included into the Salt Thin. Pass a list of importable Python modules that
are typically located in the site-packages Python directory so they will be also always included into the Salt Thin,
once generated.

2.1.3 Master Security Settings
open_mode

Default: False

Open mode is a dangerous security feature. One problem encountered with pki authentication systems is that keys
can become " 'mixed up" and authentication begins to fail. Open mode turns off authentication and tells the master
to accept all authentication. This will clean up the pki keys received from the minions. Open mode should not be
turned on for general use. Open mode should only be used for a short period of time to clean up pki keys. To turn
on open mode set this value to True.

open_mode: False

auto_accept

Default: False

Enable auto_accept. This setting will automatically accept all incoming public keys from minions.

auto_accept: False

autosign_timeout

New in version 2014.7.0.
Default: 120

Time in minutes that a incoming public key with a matching name found in pki_dir/minion_autosign/keyid is au-
tomatically accepted. Expired autosign keys are removed when the master checks the minion_autosign directory.

58 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

This method to auto accept minions can be safer than an autosign_file because the keyid record can expire and is
limited to being an exact name match. This should still be considered a less than secure option, due to the fact that
trust is based on just the requesting minion id.

autosign_file

Default: not defined

If the autosign_file is specified incoming keys specified in the autosign_file will be automatically accepted.
Matches will be searched for first by string comparison, then by globbing, then by full-string regex matching. This
should still be considered a less than secure option, due to the fact that trust is based on just the requesting minion

id.

autoreject_file

New in version 2014.1.0.
Default: not defined

Works like autosign_f1ile, but instead allows you to specify minion IDs for which keys will automatically be
rejected. Will override both membership in the autosign_file and the auto_accept setting.

publisher_acl

Default: {}

Enable user accounts on the master to execute specific modules. These modules can be expressed as regular expres-
sions. Note that client_acl option is deprecated by publisher_acl option and will be removed in future releases.

publisher_acl:
fred:
- test.ping
- pkg.*

publisher_acl_blacklist

Default: {}
Blacklist users or modules

This example would blacklist all non sudo users, including root from running any commands. It would also blacklist
any use of the ““cmd" module. Note that client_acl_blacklist option is deprecated by publisher_acl_blacklist option
and will be removed in future releases.

This is completely disabled by default.

publisher_acl_blacklist:
users:
- root
- '"A(?!sudo_).*S$' # all non sudo users
modules:
- cmd

2.1. Configuring the Salt Master 59

Salt Documentation, Release 2016.3.4

external_auth

Default: {}

The external auth system uses the Salt auth modules to authenticate and validate users to access areas of the Salt
system.

external_auth:
pam:
fred:
- test.x

token_expire

Default: 43200
Time (in seconds) for a newly generated token to live.

Default: 12 hours

token_expire: 43200

file_recv

Default: False

Allow minions to push files to the master. This is disabled by default, for security purposes.

file_recv: False

file_recv_max_size

New in version 2014.7.0.
Default: 100

Set a hard-limit on the size of the files that can be pushed to the master. It will be interpreted as megabytes.

file_recv_max_size: 100

master_sign_pubkey

Default: False

Sign the master auth-replies with a cryptographic signature of the master's public key. Please see the tutorial how
to use these settings in the Multimaster-PKI with Failover Tutorial

master_sign_pubkey: True

60 Chapter 2. Configuring Salt

http://docs.saltstack.com/en/latest/topics/tutorials/multimaster_pki.html

Salt Documentation, Release 2016.3.4

master_sign_key_name

Default: master_sign

The customizable name of the signing-key-pair without suffix.

master_sign_key_name: <filename_without_suffix>

master_pubkey_signature

Default: master_pubkey_signature

The name of the file in the master's pki-directory that holds the pre-calculated signature of the master's public-key.

master_pubkey_signature: <filename>

master_use_pubkey_s1ignature

Default: False

Instead of computing the signature for each auth-reply, use a pre-calculated signature. The mas-
ter_pubkey_signature must also be set for this.

master_use_pubkey_signature: True

rotate_aes_key

Default: True

Rotate the salt-masters AES-key when a minion-public is deleted with salt-key. This is a very important security-
setting. Disabling it will enable deleted minions to still listen in on the messages published by the salt-master. Do
not disable this unless it is absolutely clear what this does.

rotate_aes_key: True

2.1.4 Master Module Management
runner_dirs

Default: []

Set additional directories to search for runner modules.

runner_dirs:
- /var/lib/salt/runners

cython_enable

Default: False

Set to true to enable Cython modules (.pyx files) to be compiled on the fly on the Salt master.

2.1. Configuring the Salt Master 61

Salt Documentation, Release 2016.3.4

cython_enable: False

2.1.5 Master State System Settings

state_top

Default: top.sls

The state system uses a " “top" file to tell the minions what environment to use and what modules to use. The state_top
file is defined relative to the root of the base environment.

state_top: top.sls

master_tops

Default: {}

The master_tops option replaces the external_nodes option by creating a pluggable system for the generation of
external top data. The external_nodes option is deprecated by the master_tops option. To gain the capabilities of the
classic external_nodes system, use the following configuration:

master_tops:
ext_nodes: <Shell command which returns yaml>

external_nodes

Default: None

The external_nodes option allows Salt to gather data that would normally be placed in a top file from and external
node controller. The external_nodes option is the executable that will return the ENC data. Remember that Salt will
look for external nodes AND top files and combine the results if both are enabled and available!

external_nodes: cobbler-ext-nodes

renderer

Default: yaml_jinja

The renderer to use on the minions to render the state data.

renderer: yaml_jinja

jinja_trim_blocks

New in version 2014.1.0.
Default: False

If this is set to True, the first newline after a Jinja block is removed (block, not variable tag!). Defaults to False
and corresponds to the Jinja environment init variable trim_blocks.

62 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

jinja_trim_blocks: False

jinja_lstrip_blocks

New in version 2014.1.0.

Default: False

If this is set to True, leading spaces and tabs are stripped from the start of a line to a block. Defaults to False and

corresponds to the Jinja environment init variable 1strip_blocks.

jinja_lstrip_blocks: False

failhard

Default: False

Set the global failhard flag. This informs all states to stop running states at the moment a single state fails.

failhard: False

state_verbose

Default: True

Controls the verbosity of state runs. By default, the results of all states are returned, but setting this value to False

will cause salt to only display output for states that failed or states that have changes.

state_verbose: False

state_output

Default: full

The state_output setting changes if the output is the full multi line output for each changed state if set to “full', but
if set to “terse' the output will be shortened to a single line. If set to "mixed', the output will be terse unless a state
failed, in which case that output will be full. If set to “changes', the output will be full unless the state didn't change.

state_output: full

state_aggregate

Default: False

Automatically aggregate all states that have support for mod_aggregate by setting to True. Or pass a list of state

module names to automatically aggregate just those types.

state_aggregate:
- pkg

state_aggregate: True

2.1. Configuring the Salt Master

63

Salt Documentation, Release 2016.3.4

state_events

Default: False

Send progress events as each function in a state run completes execution by setting to True. Progress events are in
the format salt/job/<JID>/prog/<MID>/<RUN NUM>.

state_events: True

yaml_utfs8

Default: False

Enable extra routines for YAML renderer used states containing UTF characters.

yaml_utf8: False

test

Default: False

Set all state calls to only test if they are going to actually make changes or just post what changes are going to be
made.

test: False

2.1.6 Master File Server Settings

fileserver_backend

Default: ['roots']

Salt supports a modular fileserver backend system, this system allows the salt master to link directly to third party
systems to gather and manage the files available to minions. Multiple backends can be configured and will be
searched for the requested file in the order in which they are defined here. The default setting only enables the
standard backend roots, which is configured using the file_roots option.

Example:

fileserver_backend:
- roots
- git

Note: For masterless Salt, this parameter must be specified in the minion config file.

fileserver_followsymlinks

New in version 2014.1.0.

Default: True

64 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

By default, the file_server follows symlinks when walking the filesystem tree. Currently this only applies to the
default roots fileserver_backend.

fileserver_followsymlinks: True

fileserver_ignoresymlinks

New in version 2014.1.0.
Default: False

If you do not want symlinks to be treated as the files they are pointing to, set fileserver_ignoresymlinks
to True. By default this is set to False. When set to True, any detected symlink while listing files on the Master
will not be returned to the Minion.

fileserver_ignoresymlinks: False

fileserver_limit_traversal

New in version 2014.1.0.
Default: False

By default, the Salt fileserver recurses fully into all defined environments to attempt to find files. To limit this
behavior so that the fileserver only traverses directories with SLS files and special Salt directories like _modules, set
fileserver_limit_traversal to True. This might be useful for installations where a file root has a very
large number of files and performance is impacted.

fileserver_limit_traversal: False

hash_type

Default: md5

The hash_type is the hash to use when discovering the hash of a file on the master server. The default is md5, but
shal, sha224, sha256, sha384, and sha512 are also supported.

hash_type: md5

file_buffer_size

Default: 1048576

The buffer size in the file server in bytes.

file_buffer_size: 1048576

file_ignore_regex

Default: '

A regular expression (or a list of expressions) that will be matched against the file path before syncing the modules
and states to the minions. This includes files affected by the file.recurse state. For example, if you manage your

2.1. Configuring the Salt Master 65

Salt Documentation, Release 2016.3.4

custom modules and states in subversion and don't want all the ".svn' folders and content synced to your minions,
you could set this to */.svn($|/)". By default nothing is ignored.

file_ignore_regex:
- "/\.svn($|/)!
- /\.git (/)

file_ignore_glob

Default "'

A file glob (or list of file globs) that will be matched against the file path before syncing the modules and states to
the minions. This is similar to file_ignore_regex above, but works on globs instead of regex. By default nothing is
ignored.

file_dignore_glob:
- "\x.pyc'
- '"\x/somefolder/*.bak'
- "\x.swp'

Note: Vim's .swp files are a common cause of Unicode errors in file. recurse states which use templating.
Unless there is a good reason to distribute them via the fileserver, it is good practice to include '\ *.swp' in the
file_ignore_glob

roots: Master's Local File Server

file_roots

Default:

base:
- /srv/salt

Salt runs a lightweight file server written in ZeroMQ to deliver files to minions. This file server is built into the
master daemon and does not require a dedicated port.

The file server works on environments passed to the master. Each environment can have multiple root directories.
The subdirectories in the multiple file roots cannot match, otherwise the downloaded files will not be able to be
reliably ensured. A base environment is required to house the top file.

Example:

file_roots:

base:
- /srv/salt

dev:
- /srv/salt/dev/services
- /srv/salt/dev/states

prod:
- /srv/salt/prod/services
- /srv/salt/prod/states

66 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

Note: For masterless Salt, this parameter must be specified in the minion config file.

git: Git Remote File Server Backend

gitfs_remotes

Default: []

When using the g1t fileserver backend at least one git remote needs to be defined. The user running the salt master
will need read access to the repo.

The repos will be searched in order to find the file requested by a client and the first repo to have the file will return
it. Branches and tags are translated into salt environments.

gitfs_remotes:
- git://github.com/saltstack/salt-states.git
- file:///var/git/saltmaster

Note: file:// repos will be treated as a remote and copied into the master's gitfs cache, so only the local refs for
those repos will be exposed as fileserver environments.

As of 2014.7.0, it is possible to have per-repo versions of several of the gitfs configuration parameters. For more
information, see the GitFS Walkthrough.

gitfs_provider

New in version 2014.7.0.

Optional parameter used to specify the provider to be used for gitfs. More information can be found in the GitFS
Walkthrough.

Must be one of the following: pygit2, gitpython, or dulwich. If unset, then each will be tried in that same
order, and the first one with a compatible version installed will be the provider that is used.

gitfs_provider: dulwich

gitfs_ssl_verify

Default: False

Specifies whether or not to ignore SSL certificate errors when contacting the remote repository. The False setting is
useful if you're using a git repo that uses a self-signed certificate. However, keep in mind that setting this to anything
other True is a considered insecure, and using an SSH-based transport (if available) may be a better option.

gitfs_ssl_verify: True

2.1. Configuring the Salt Master 67

Salt Documentation, Release 2016.3.4

gitfs_mountpoint

New in version 2014.7.0.
Default: ''

Specifies a path on the salt fileserver which will be prepended to all files served by gitfs. This option can be used in
conjunction with gitfs_root. It can also be configured on a per-remote basis, see here for more info.

gitfs_mountpoint: salt://foo/bar

Note: The salt:// protocol designation can be left off (in other words, foo/bar and salt://foo/bar are
equivalent). Assuming a file baz . sh in the root of a gitfs remote, and the above example mountpoint, this file would
be served up via salt://foo/bar/baz.sh.

gitfs_root

Default: ''

Relative path to a subdirectory within the repository from which Salt should begin to serve files. This is useful when
there are files in the repository that should not be available to the Salt fileserver. Can be used in conjunction with
gitfs_mountpoint. If used, then from Salt's perspective the directories above the one specified will be ignored
and the relative path will (for the purposes of gitfs) be considered as the root of the repo.

gitfs_root: somefolder/otherfolder

Changed in version 2014.7.0: Ability to specify gitfs roots on a per-remote basis was added. See here for more info.

gitfs_base

Default: master

Defines which branch/tag should be used as the base environment.

gitfs_base: salt

Changed in version 2014.7.0: Ability to specify the base on a per-remote basis was added. See here for more info.

gitfs_env_whitelist

New in version 2014.7.0.
Default: []

Used to restrict which environments are made available. Can speed up state runs if the repos in gitfs_remotes
contain many branches/tags. More information can be found in the GitFS Walkthrough.

gitfs_env_whitelist:
- base
- vl.*
- 'mybranch\d+"'

68 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

gitfs_env_blacklist

New in version 2014.7.0.
Default: []

Used to restrict which environments are made available. Can speed up state runs if the repos in gitfs_remotes
contain many branches/tags. More information can be found in the GitFS Walkthrough.

gitfs_env_blacklist:
- base
- vl.*
- "mybranch\d+'

gitfs_global_lock

New in version 2015.8.9.
Default: True

When set to Fa'lse, if there is an update lock for a gitfs remote and the pid written to it is not running on the master,
the lock file will be automatically cleared and a new lock will be obtained. When set to True, Salt will simply log a
warning when there is an update lock present.

On single-master deployments, disabling this option can help automatically deal with instances where the master
was shutdown/restarted during the middle of a gitfs update, leaving a update lock in place.

However, on multi-master deployments with the gitfs cachedir shared via GlusterFS, nfs, or another network filesys-
tem, it is strongly recommended not to disable this option as doing so will cause lock files to be removed if they were
created by a different master.

Disable global lock
gitfs_global_lock: False

GitFS Authentication Options

These parameters only currently apply to the pygit2 gitfs provider. Examples of how to use these can be found in
the GitFS Walkthrough.

gitfs_user

New in version 2014.7.0.
Default: ''

Along with gitfs_password, is used to authenticate to HTTPS remotes.

gitfs_user: git

gitfs_password

New in version 2014.7.0.

Default: '

2.1. Configuring the Salt Master 69

http://www.gluster.org/

Salt Documentation, Release 2016.3.4

Along with gitfs_user,isused to authenticate to HTTPS remotes. This parameter is not required if the repository
does not use authentication.

gitfs_password: mypassword

gitfs_insecure_auth

New in version 2014.7.0.
Default: False

By default, Salt will not authenticate to an HT'TP (non-HTTPS) remote. This parameter enables authentication over
HTTP. Enable this at your own risk.

gitfs_insecure_auth: True

gitfs_pubkey

New in version 2014.7.0.
Default: ''

Along with gitfs_privkey (and optionally gitfs_passphrase),isused to authenticate to SSH remotes. This
parameter (or its per-remote counterpart) is required for SSH remotes.

gitfs_pubkey: /path/to/key.pub

gitfs_privkey

New in version 2014.7.0.
Default: '

Along with gitfs_pubkey (and optionally gitfs_passphrase), is used to authenticate to SSH remotes. This
parameter (or its per-remote counterpart) is required for SSH remotes.

gitfs_privkey: /path/to/key

gitfs_passphrase

New in version 2014.7.0.
Default: ''

This parameter is optional, required only when the SSH key being used to authenticate is protected by a passphrase.

gitfs_passphrase: mypassphrase

70 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

hg: Mercurial Remote File Server Backend

hgfs_remotes

New in version 0.17.0.
Default: []

When using the hg fileserver backend at least one mercurial remote needs to be defined. The user running the salt
master will need read access to the repo.

The repos will be searched in order to find the file requested by a client and the first repo to have the file will return
it. Branches and/or bookmarks are translated into salt environments, as defined by the hgfs_branch_method
parameter.

hgfs_remotes:
- https://username@bitbucket.org/username/reponame

Note: As of 2014.7.0, it is possible to have per-repo versions of the hgfs_root, hgfs_mountpoint,
hgfs_base,and hgfs_branch_method parameters. For example:

hgfs_remotes:

- https://username@bitbucket.org/username/repol
- base: saltstates

- https://username@bitbucket.org/username/repo2:
- root: salt
- mountpoint: salt://foo/bar/baz

- https://username@bitbucket.org/username/repo3:
- root: salt/states
- branch_method: mixed

hgfs_branch_method

New in version 0.17.0.

Default: branches

Defines the objects that will be used as fileserver environments.
« branches - Only branches and tags will be used
« bookmarks - Only bookmarks and tags will be used

- mixed - Branches, bookmarks, and tags will be used

hgfs_branch_method: mixed

Note: Starting in version 2014.1.0, the value of the hgf's_base parameter defines which branch is used as the base
environment, allowing for a base environment to be used with an hgfs_branch_method of bookmarks.

Prior to this release, the default branch will be used as the base environment.

2.1. Configuring the Salt Master 71

Salt Documentation, Release 2016.3.4

hgfs_mountpoint

New in version 2014.7.0.
Default: ''

Specifies a path on the salt fileserver which will be prepended to all files served by hgfs. This option can be used in
conjunction with hgfs_root. It can also be configured on a per-remote basis, see here for more info.

hgfs_mountpoint: salt://foo/bar

Note: The salt:// protocol designation can be left off (in other words, foo/bar and salt://foo/bar

are equivalent). Assuming a file baz.sh in the root of an hgfs remote, this file would be served up via
salt://foo/bar/baz.sh.

hgfs_root

New in version 0.17.0.
Default: ''

Relative path to a subdirectory within the repository from which Salt should begin to serve files. This is useful when
there are files in the repository that should not be available to the Salt fileserver. Can be used in conjunction with
hgfs_mountpoint. If used, then from Salt's perspective the directories above the one specified will be ignored
and the relative path will (for the purposes of hgfs) be considered as the root of the repo.

hgfs_root: somefolder/otherfolder

Changed in version 2014.7.0: Ability to specify hgfs roots on a per-remote basis was added. See here for more info.

hgfs_base

New in version 2014.1.0.
Default: default

Defines which branch should be used as the base environment. Change this if hgfs_branch_method is set to
bookmarks to specify which bookmark should be used as the base environment.

hgfs_base: salt

hgfs_env_whitelist

New in version 2014.7.0.
Default: []

Used to restrict which environments are made available. Can speed up state runs if your hgfs remotes contain many
branches/bookmarks/tags. Full names, globs, and regular expressions are supported. If using a regular expression,
the expression must match the entire minion ID.

If used, only branches/bookmarks/tags which match one of the specified expressions will be exposed as fileserver
environments.

72 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

If used in conjunction with hgfs_env_blacklist, then the subset of branches/bookmarks/tags which match
the whitelist but do not match the blacklist will be exposed as fileserver environments.

hgfs_env_whitelist:
- base
- vl.*
- 'mybranch\d+'

hgfs_env_blacklist

New in version 2014.7.0.
Default: []

Used to restrict which environments are made available. Can speed up state runs if your hgfs remotes contain many
branches/bookmarks/tags. Full names, globs, and regular expressions are supported. If using a regular expression,
the expression must match the entire minion ID.

If used, branches/bookmarks/tags which match one of the specified expressions will not be exposed as fileserver
environments.

If used in conjunction with hgfs_env_whitelist, then the subset of branches/bookmarks/tags which match
the whitelist but do not match the blacklist will be exposed as fileserver environments.

hgfs_env_blacklist:
- base
- vl.x
- "mybranch\d+'

svn: Subversion Remote File Server Backend

svnfs_remotes

New in version 0.17.0.
Default: []

When using the svn fileserver backend at least one subversion remote needs to be defined. The user running the
salt master will need read access to the repo.

The repos will be searched in order to find the file requested by a client and the first repo to have the file will return
it. The trunk, branches, and tags become environments, with the trunk being the base environment.

svnfs_remotes:
- svn://foo.com/svn/myproject

Note: As of 2014.7.0, it is possible to have per-repo versions of the following configuration parameters:
« svnfs_root
- svnfs_mountpoint
.« svnfs_trunk

« svnfs_branches

svnfs_tags

2.1. Configuring the Salt Master 73

Salt Documentation, Release 2016.3.4

For example:

svnfs_remotes:
- svn://foo.com/svn/projectl
- svn://foo.com/svn/project2:
- root: salt
- mountpoint: salt://foo/bar/baz
- svn//foo.com/svn/project3:
- root: salt/states
- branches: branch
- tags: tag

svnfs_mountpoint

New in version 2014.7.0.
Default: "'

Specifies a path on the salt fileserver which will be prepended to all files served by hgfs. This option can be used in
conjunction with svnfs_root. It can also be configured on a per-remote basis, see here for more info.

svnfs_mountpoint: salt://foo/bar

Note: The sa'lt:// protocol designation can be left off (in other words, foo/bar and salt://foo/bar
are equivalent). Assuming a file baz.sh in the root of an svnfs remote, this file would be served up via
salt://foo/bar/baz.sh.

svnfs_root

New in version 0.17.0.
Default: ''

Relative path to a subdirectory within the repository from which Salt should begin to serve files. This is useful when
there are files in the repository that should not be available to the Salt fileserver. Can be used in conjunction with
svnfs_mountpoint. If used, then from Salt's perspective the directories above the one specified will be ignored
and the relative path will (for the purposes of svnfs) be considered as the root of the repo.

svnfs_root: somefolder/otherfolder

Changed in version 2014.7.0: Ability to specify svnfs roots on a per-remote basis was added. See here for more
info.

svnfs_trunk

New in version 2014.7.0.
Default: trunk

Path relative to the root of the repository where the trunk is located. Can also be configured on a per-remote basis,
see here for more info.

74 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

svnfs_trunk: trunk

svnfs_branches

New in version 2014.7.0.
Default: branches

Path relative to the root of the repository where the branches are located. Can also be configured on a per-remote
basis, see here for more info.

svnfs_branches: branches

svnfs_tags

New in version 2014.7.0.
Default: tags

Path relative to the root of the repository where the tags are located. Can also be configured on a per-remote basis,
see here for more info.

svnfs_tags: tags

svnfs_env_whitelist

New in version 2014.7.0.
Default: []

Used to restrict which environments are made available. Can speed up state runs if your svnfs remotes contain
many branches/tags. Full names, globs, and regular expressions are supported. If using a regular expression, the
expression must match the entire minion ID.

If used, only branches/tags which match one of the specified expressions will be exposed as fileserver environments.

If used in conjunction with svnfs_env_blacklist, then the subset of branches/tags which match the whitelist
but do not match the blacklist will be exposed as fileserver environments.

svnfs_env_whitelist:
- base
- vl.*
- 'mybranch\d+"'

svnfs_env_blacklist

New in version 2014.7.0.
Default: []

Used to restrict which environments are made available. Can speed up state runs if your svnfs remotes contain
many branches/tags. Full names, globs, and regular expressions are supported. If using a regular expression, the
expression must match the entire minion ID.

2.1. Configuring the Salt Master 75

Salt Documentation, Release 2016.3.4

If used, branches/tags which match one of the specified expressions will not be exposed as fileserver environments.

If used in conjunction with svnfs_env_whitelist, then the subset of branches/tags which match the whitelist
but do not match the blacklist will be exposed as fileserver environments.

svnfs_env_blacklist:
- base
- vl.*
- "mybranch\d+'

minion: MinionFS Remote File Server Backend
minionfs_env
New in version 2014.7.0.

Default: base

Environment from which MinionFS files are made available.

minionfs_env: minionfs

minionfs_mountpoint

New in version 2014.7.0.
Default: ''

Specifies a path on the salt fileserver from which minionfs files are served.

minionfs_mountpoint: salt://foo/bar

Note: The salt:// protocol designation can be left off (in other words, foo/bar and salt://foo/bar are
equivalent).

minionfs_whitelist

New in version 2014.7.0.
Default: []

Used to restrict which minions' pushed files are exposed via minionfs. If using a regular expression, the expression
must match the entire minion ID.

If used, only the pushed files from minions which match one of the specified expressions will be exposed.

If used in conjunction with minionfs_blacklist, then the subset of hosts which match the whitelist but do not
match the blacklist will be exposed.

minionfs_whitelist:
- server0l
- devx
- 'mail\d+.mydomain.tld’

76 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

minionfs_blacklist

New in version 2014.7.0.
Default: []

Used to restrict which minions' pushed files are exposed via minionfs. If using a regular expression, the expression
must match the entire minion ID.

If used, only the pushed files from minions which match one of the specified expressions will not be exposed.

If used in conjunction with minionfs_whitelist, then the subset of hosts which match the whitelist but do not
match the blacklist will be exposed.

minionfs_blacklist:
- server0l
- devx
- 'mail\d+.mydomain.tld'

2.1.7 Pillar Configuration

pillar_roots

Default:

base:
- /srv/pillar

Set the environments and directories used to hold pillar sls data. This configuration is the same as file_roots:

pillar_roots:
base:
- /srv/pillar
dev:
- /srv/pillar/dev
prod:
- /srv/pillar/prod

pillar_opts

Default: False

The pillar_opts option adds the master configuration file data to a dict in the pillar called master. This can be
used to set simple configurations in the master config file that can then be used on minions.

Note that setting this option to True means the master config file will be included in all minion's pillars. While
this makes global configuration of services and systems easy, it may not be desired if sensitive data is stored in the
master configuration.

pillar_opts: False

ext_pillar

The ext_pillar option allows for any number of external pillar interfaces to be called when populating pillar data.
The configuration is based on ext_pillar functions. The available ext_pillar functions can be found herein:

2.1. Configuring the Salt Master 77

Salt Documentation, Release 2016.3.4

https://github.com/saltstack/salt/blob/develop/salt/pillar
By default, the ext_pillar interface is not configured to run.

Default: []

ext_pillar:
- hiera: /etc/hiera.yaml
- cmd_yaml: cat /etc/salt/yaml
- reclass:
inventory_base_uri: /etc/reclass

There are additional details at salt-pillars

ext_pillar_first

New in version 2015.5.0.
Default: False

This option allows for external pillar sources to be evaluated before pillar_roots. This allows for targeting file
system pillar from ext_pillar.

ext_pillar_first: False

Git External Pillar (git_pillar) Configuration Options

git_pillar_provider

New in version 2015.8.0.

Specify the provider to be used for git_pillar. Must be either pygit2 or gitpython. If unset, then both will be
tried in that same order, and the first one with a compatible version installed will be the provider that is used.

git_pillar_provider: gitpython

git_pillar_base

New in version 2015.8.0.
Default: master

If the desired branch matches this value, and the environment is omitted from the git_pillar configuration, then the
environment for that git_pillar remote will be base. For example, in the configuration below, the foo branch/tag
would be assigned to the base environment, while bar would be mapped to the bar environment.

git_pillar_base: foo

ext_pillar:
- git:
- foo https://mygitserver/git-pillar.git
- bar https://mygitserver/git-pillar.git

78 Chapter 2. Configuring Salt

https://github.com/saltstack/salt/blob/develop/salt/pillar

Salt Documentation, Release 2016.3.4

git_pillar_branch

New in version 2015.8.0.
Default: master

If the branch is omitted from a git_pillar remote, then this branch will be used instead. For example, in the config-
uration below, the first two remotes would use the pillardata branch/tag, while the third would use the foo
branch/tag.

git_pillar_branch: pillardata

ext_pillar:
- git:
- https://mygitserver/pillarl.git
- https://mygitserver/pillar2.git:
- root: pillar
- foo https://mygitserver/pillar3.git

git_pillar_env

New in version 2015.8.0.
Default: '' (unset)

Environment to use for git_pillar remotes. This is normally derived from the branch/tag (or from a per-remote env
parameter), but if set this will override the process of deriving the env from the branch/tag name. For example, in the
configuration below the foo branch would be assigned to the base environment, while the bar branch would need
to explicitly have bar configured as it's environment to keep it from also being mapped to the base environment.

git_pillar_env: base

ext_pillar:
- git:
- foo https://mygitserver/git-pillar.git
- bar https://mygitserver/git-pillar.git:
- env: bar

For this reason, this option is recommended to be left unset, unless the use case calls for all (or almost all) of the
git_pillar remotes to use the same environment irrespective of the branch/tag being used.

git_pillar_root

New in version 2015.8.0.
Default: ''

Path relative to the root of the repository where the git_pillar top file and SLS files are located. In the below config-
uration, the pillar top file and SLS files would be looked for in a subdirectory called pillar.

git_pillar_root: pillar

ext_pillar:
- git:
- master https://mygitserver/pillarl.git
- master https://mygitserver/pillar2.git

2.1. Configuring the Salt Master 79

Salt Documentation, Release 2016.3.4

Note: This is a global option. If only one or two repos need to have their files sourced from a subdirectory, then
git_pillar_root can be omitted and the root can be specified on a per-remote basis, like so:

ext_pillar:
- git:
- master https://mygitserver/pillarl.git
- master https://mygitserver/pillar2.git:
- root: pillar

In this example, for the first remote the top file and SLS files would be looked for in the root of the repository, while
in the second remote the pillar data would be retrieved from the pillar subdirectory.

git_pillar_ssl_verify

New in version 2015.8.0.
Default: False

Specifies whether or not to ignore SSL certificate errors when contacting the remote repository. The False setting is
useful if you're using a git repo that uses a self-signed certificate. However, keep in mind that setting this to anything
other True is a considered insecure, and using an SSH-based transport (if available) may be a better option.

git_pillar_ssl_verify: True

git_pillar_global_lock

New in version 2015.8.9.
Default: True

When set to False, if there is an update/checkout lock for a git_pillar remote and the pid written to it is not running
on the master, the lock file will be automatically cleared and a new lock will be obtained. When set to True, Salt
will simply log a warning when there is an lock present.

On single-master deployments, disabling this option can help automatically deal with instances where the master
was shutdown/restarted during the middle of a git_pillar update/checkout, leaving a lock in place.

However, on multi-master deployments with the git_pillar cachedir shared via GlusterFS, nfs, or another network
filesystem, it is strongly recommended not to disable this option as doing so will cause lock files to be removed if
they were created by a different master.

Disable global lock
git_pillar_global_lock: False

Git External Pillar Authentication Options

These parameters only currently apply to the pygit2 git_pillar_provider. Authentication works the same
as it does in gitfs, as outlined in the GitFS Walkthrough, though the global configuration options are named differently
to reflect that they are for git_pillar instead of gitfs.

80 Chapter 2. Configuring Salt

http://www.gluster.org/

Salt Documentation, Release 2016.3.4

git_pillar_user

New in version 2015.8.0.
Default: ''
Along with git_pillar_password,is used to authenticate to HTTPS remotes.

git_pillar_user: git

git_pillar_password

New in version 2015.8.0.
Default: ''

Along with git_pillar_user,is used to authenticate to HTTPS remotes. This parameter is not required if the
repository does not use authentication.

git_pillar_password: mypassword

git_pillar_insecure_auth

New in version 2015.8.0.
Default: False

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote. This parameter enables authentication over
HTTP. Enable this at your own risk.

git_pillar_insecure_auth: True

git_pillar_pubkey

New in version 2015.8.0.
Default: ''

Along with git_pillar_privkey (and optionally git_pillar_passphrase), is used to authenticate to
SSH remotes.

git_pillar_pubkey: /path/to/key.pub

git_pillar_privkey

New in version 2015.8.0.
Default: ''

Along withgit_pillar_pubkey (and optionally git_pillar_passphrase),isused to authenticate to SSH
remotes.

git_pillar_privkey: /path/to/key

2.1. Configuring the Salt Master 81

Salt Documentation, Release 2016.3.4

git_pillar_passphrase

New in version 2015.8.0.

Default: ''

This parameter is optional, required only when the SSH key being used to authenticate is protected by a passphrase.

git_pillar_passphrase: mypassphrase

Pillar Merging Options

pillar_source_merging_strategy

New in version 2014.7.0.

Default: smart

The pillar_source_merging_strategy option allows you to configure merging strategy between different sources. It
accepts 5 values:

e None:

New in version 2016.3.4: It will not do any merging at all and only parse the pillar data from the passed environment
and ‘base' if no environment was specified.

e Fecurse:

it will merge recursively mapping of data. For example, theses 2 sources:

foo: 42
bar:
elementl: True

bar:
element2: True
baz: quux

will be merged as:

foo: 42
bar:
elementl: True
element2: True
baz: quux

- aggregate
instructs aggregation of elements between sources that use the #!yamlex renderer.

For example, these two documents:

#!lyamlex

foo: 42

bar: laggregate {
elementl: True

}

baz: !aggregate quux

82

Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

#!lyamlex

bar: laggregate {
element2: True

}

baz: laggregate quux2

will be merged as:

foo: 42
bar:
elementl: True
element2: True
baz:
- quux
- quux2

. overwrite:

Will use the behaviour of the 2014.1 branch and earlier.

Overwrites elements according the order in which they are processed.

First pillar processed:

A:
first_key: blah
second_key: blah

Second pillar processed:

A:
third_key: blah
fourth_key: blah

will be merged as:

A:
third_key: blah
fourth_key: blah

smart (default):

Guesses the best strategy based on the *‘renderer"” setting.

pillar_merge_1lists

New in version 2015.8.0.

Default: False

Recursively merge lists by aggregating them instead of replacing them.

pillar_merge_lists: False

2.1. Configuring the Salt Master

83

Salt Documentation, Release 2016.3.4

Pillar Cache Options

pillar_cache

New in version 2015.8.8.
Default: False

A master can cache pillars locally to bypass the expense of having to render them for each minion on every request.
This feature should only be enabled in cases where pillar rendering time is known to be unsatisfactory and any
attendant security concerns about storing pillars in a master cache have been addressed.

When enabling this feature, be certain to read through the additional pillar_cache_* configuration options to
fully understand the tunable parameters and their implications.

pillar_cache: False

Note: Setting pillar_cache: True has no effect on targeting minions with pillar.

pillar_cache_ttl

New in version 2015.8.8.
Default: 3600

If and only if a master has set pillar_cache: True, the cache TTL controls the amount of time, in seconds,
before the cache is considered invalid by a master and a fresh pillar is recompiled and stored.

pillar_cache_backend

New in version 2015.8.8.

Default: disk

If an only if a master has set pillar_cache: True, one of several storage providers can be utilized:
« disk (default):

The default storage backend. This caches rendered pillars to the master cache. Rendered pillars are serialized
and deserialized as msgpack structures for speed. Note that pillars are stored UNENCRYPTED. Ensure that
the master cache has permissions set appropriately (sane defaults are provided).

« memory [EXPERIMENTAL]:

An optional backend for pillar caches which uses a pure-Python in-memory data structure for maximal per-
formance. There are several caveats, however. First, because each master worker contains its own in-memory
cache, there is no guarantee of cache consistency between minion requests. This works best in situations
where the pillar rarely if ever changes. Secondly, and perhaps more importantly, this means that unencrypted
pillars will be accessible to any process which can examine the memory of the salt-master! This may
represent a substantial security risk.

pillar_cache_backend: disk

84 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

2.1.8 Syndic Server Settings

A Salt syndic is a Salt master used to pass commands from a higher Salt master to minions below the syndic. Using
the syndic is simple. If this is a master that will have syndic servers(s) below it, set the ““order_masters" setting to
True.

If this is a master that will be running a syndic daemon for passthrough the " “syndic_master" setting needs to be set
to the location of the master server.

Do not not forget that, in other words, it means that it shares with the local minion its ID and PKI_DIR.

order_masters

Default: False

Extra data needs to be sent with publications if the master is controlling a lower level master via a syndic minion. If
this is the case the order_masters value must be set to True

order_masters: False

syndic_master

Default: '

If this master will be running a salt-syndic to connect to a higher level master, specify the higher level master with
this configuration value.

syndic_master: masterofmasters

You can optionally connect a syndic to multiple higher level masters by setting the “syndic_master' value to a list:

syndic_master:
- masterofmastersl
- masterofmasters2

Each higher level master must be set up in a multimaster configuration.

syndic_master_port

Default: 4506

If this master will be running a salt-syndic to connect to a higher level master, specify the higher level master port
with this configuration value.

syndic_master_port: 4506

syndic_pidfile

Default: salt-syndic.pid

If this master will be running a salt-syndic to connect to a higher level master, specify the pidfile of the syndic
daemon.

2.1. Configuring the Salt Master 85

Salt Documentation, Release 2016.3.4

syndic_pidfile: syndic.pid

syndic_log_file

Default: syndic. log

If this master will be running a salt-syndic to connect to a higher level master, specify the log_file of the syndic
daemon.

syndic_log_file: salt-syndic.log

syndic_failover

New in version 2016.3.0.
Default: random

The behaviour of the multi-syndic when connection to a master of masters failed. Can specify random (default)
or ordered. If set to random, masters will be iterated in random order. If ordered is specified, the configured
order will be used.

syndic_failover: random

2.1.9 Peer Publish Settings

Salt minions can send commands to other minions, but only if the minion is allowed to. By default ""Peer Publi-
cation"” is disabled, and when enabled it is enabled for specific minions and specific commands. This allows secure
compartmentalization of commands based on individual minions.

peer

Default: {}

The configuration uses regular expressions to match minions and then a list of regular expressions to match functions.
The following will allow the minion authenticated as foo.example.com to execute functions from the test and pkg
modules.

peer:
foo.example.com:
- test.x
- pkg.*

This will allow all minions to execute all commands:

peer:
SR

This is not recommended, since it would allow anyone who gets root on any single minion to instantly have root on
all of the minions!

By adding an additional layer you can limit the target hosts in addition to the accessible commands:

86 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

peer:
foo.example.com:
"dbx':
- test.x
- pkg.*

peer_run

Default: {}

The peer_run option is used to open up runners on the master to access from the minions. The peer_run configuration
matches the format of the peer configuration.

The following example would allow foo.example.com to execute the manage.up runner:

peer_run:
foo.example.com:
- manage.up

2.1.10 Master Logging Settings
log_file

Default: /var/log/salt/master
The master log can be sent to a regular file, local path name, or network location. See also log_f1ile.

Examples:

’ log_file: /var/log/salt/master

llog_fﬂe: file:///dev/log

’ log_file: udp://loghost:10514

log_level

Default: warning

The level of messages to send to the console. See also log_level.

log_level: warning

log_level_logfile

Default: warning

The level of messages to send to the log file. See also log_level_logfile. When it is not set explicitly it will
inherit the level set by Log_level option.

log_level_logfile: warning

2.1. Configuring the Salt Master 87

Salt Documentation, Release 2016.3.4

log_datefmt

Default: %H : %M : %S

The date and time format used in console log messages. See also Log_datefmt.

log_datefmt: '%H:%M:%S'

log_datefmt_logfile

Default: %Y-%m-%d %H:%M:%S

The date and time format used in log file messages. See also log_datefmt_logfile.

log_datefmt_logfile: '%Y-%m-%d %H:%M:%S"'

log_fmt_console

Default: [%(levelname)-8s] %(message)s

The format of the console logging messages. See also Llog_fmt_console.

Note: Log colors are enabled in Llog_fmt_console rather than the color config since the logging system is
loaded before the master config.

Console log colors are specified by these additional formatters:
%(colorlevel)s %(colorname)s %(colorprocess)s %(colormsg)s

Since it is desirable to include the surrounding brackets, '[' and "], in the coloring of the messages, these color
formatters also include padding as well. Color LogRecord attributes are only available for console logging.

log_fmt_console: '%(colorlevel)s %(colormsg)s'
log_fmt_console: '[%(levelname)-8s] %(message)s'

log_fmt_logfile

Default: % (asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s

The format of the log file logging messages. See also log_fmt_logfile.

log_fmt_logfile: '%(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s'

log_granular_levels

Default: {}

This can be used to control logging levels more specifically. See also log_granular_levels.

88 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

2.1.11 Node Groups

Default: {}

Node groups allow for logical groupings of minion nodes. A group consists of a group name and a compound target.

nodegroups:
groupl: 'L@foo.domain.com,bar.domain.com,baz.domain.com or blx.domain.com'
group2: 'GRos:Debian and foo.domain.com'
group3: 'GQRos:Debian and N@groupl'
group4:
- 'G@foo:bar'
_ lor-l
- 'G@foo:baz'

More information on using nodegroups can be found here.

2.1.12 Range Cluster Settings
range_server

Default: 'range:80'

The range server (and optional port) that serves your cluster information https://github.com/ytoolshed/range/wiki/
%22yamlfile%22-module-file-spec

range_server: range:80

2.1.13 Include Configuration

default_include

Default: master.d/*.conf

The master can include configuration from other files. Per default the master will automatically include all config
files from master.d/*.conf where master.d is relative to the directory of the master configuration file.

Note: Salt creates files in the master . d directory for its own use. These files are prefixed with an underscore. A
common example of this is the _schedule. conf file.

include

Default: not defined

The master can include configuration from other files. To enable this, pass a list of paths to this option. The paths
can be either relative or absolute; if relative, they are considered to be relative to the directory the main minion
configuration file lives in. Paths can make use of shell-style globbing. If no files are matched by a path passed to this
option then the master will log a warning message.

Include files from a master.d directory in the same
directory as the master config file
include: master.d/*

2.1. Configuring the Salt Master 89

https://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec
https://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec

Salt Documentation, Release 2016.3.4

Include a single extra file into the configuration
include: /etc/roles/webserver

Include several files and the master.d directory
include:

- extra_config

- master.d/*

- /etc/roles/webserver

2.1.14 Windows Software Repo Settings

winrepo_provider

New in version 2015.8.0.

Specify the provider to be used for winrepo. Must be either pygit2 or gitpython. If unset, then both will be
tried in that same order, and the first one with a compatible version installed will be the provider that is used.

winrepo_provider: gitpython

winrepo_dir

Changed in version 2015.8.0: Renamed from win_repo towinrepo_dir.
Default: /srv/salt/win/repo

Location on the master where the winrepo_remotes are checked out for pre-2015.8.0 minions. 2015.8.0 and later
minions use winrepo_remotes_ng instead.

winrepo_dir: /srv/salt/win/repo

winrepo_dir_ng

New in version 2015.8.0: A new ng repo was added.
Default: /srv/salt/win/repo-ng

Location on the master where the winrepo_remotes_ng are checked out for 2015.8.0 and later minions.

winrepo_dir_ng: /srv/salt/win/repo-ng

winrepo_cachefile

Changed in version 2015.8.0: Renamed from win_repo_mastercachefile towinrepo_cachefile

Note: 2015.8.0 and later minions do not use this setting since the cachefile is now located on the minion.

Default: winrepo.p

Path relative to winrepo_dir where the winrepo cache should be created.

920 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

winrepo_cachefile: winrepo.p

winrepo_remotes

Changed in version 2015.8.0: Renamed from win_gitrepos towinrepo_remotes
Default: ['https://github.com/saltstack/salt-winrepo.git']

List of git repositories to checkout and include in the winrepo for pre-2015.8.0 minions. 2015.8.0 and later minions
use winrepo_remotes_ng instead.

winrepo_remotes:
- https://github.com/saltstack/salt-winrepo.git

To specify a specific revision of the repository, prepend a commit ID to the URL of the repository:

winrepo_remotes:
- '<commit_id> https://github.com/saltstack/salt-winrepo.git’

Replace <commit_1id> with the SHA1 hash of a commit ID. Specifying a commit ID is useful in that it allows one
to revert back to a previous version in the event that an error is introduced in the latest revision of the repo.

winrepo_remotes_ng

New in version 2015.8.0: A new ng repo was added.
Default: ['https://github.com/saltstack/salt-winrepo-ng.git']

List of git repositories to checkout and include in the winrepo for 2015.8.0 and later minions.

winrepo_remotes_ng:
- https://github.com/saltstack/salt-winrepo-ng.git

To specify a specific revision of the repository, prepend a commit ID to the URL of the repository:

winrepo_remotes:
- '<commit_id> https://github.com/saltstack/salt-winrepo-ng.git'

Replace <commit_id> with the SHA1 hash of a commit ID. Specifying a commit ID is useful in that it allows one
to revert back to a previous version in the event that an error is introduced in the latest revision of the repo.

winrepo_branch

New in version 2015.8.0.
Default: master

If the branch is omitted from a winrepo remote, then this branch will be used instead. For example, in the con-
figuration below, the first two remotes would use the winrepo branch/tag, while the third would use the foo
branch/tag.

winrepo_branch: winrepo

ext_pillar:
- git:
- https://mygitserver/winrepol.git

2.1. Configuring the Salt Master 91

Salt Documentation, Release 2016.3.4

- https://mygitserver/winrepo2.git:
- foo https://mygitserver/winrepo3.git

winrepo_ssl_verify

New in version 2015.8.0.
Default: False

Specifies whether or not to ignore SSL certificate errors when contacting the remote repository. The False setting is
useful if you're using a git repo that uses a self-signed certificate. However, keep in mind that setting this to anything
other True is a considered insecure, and using an SSH-based transport (if available) may be a better option.

winrepo_ssl_verify: True

Winrepo Authentication Options

These parameters only currently apply to the pygit2 winrepo_provider. Authentication works the same as
it does in gitfs, as outlined in the GitFS Walkthrough, though the global configuration options are named differently
to reflect that they are for winrepo instead of gitfs.

winrepo_user

New in version 2015.8.0.
Default: ''

Along with winrepo_password, is used to authenticate to HTTPS remotes.

winrepo_user: git

winrepo_password

New in version 2015.8.0.
Default: ''

Along with winrepo_user, is used to authenticate to HTTPS remotes. This parameter is not required if the
repository does not use authentication.

winrepo_password: mypassword

winrepo_insecure_auth

New in version 2015.8.0.
Default: False

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote. This parameter enables authentication over
HTTP. Enable this at your own risk.

92 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

winrepo_insecure_auth: True

winrepo_pubkey

New in version 2015.8.0.
Default: ''

Along with winrepo_privkey (and optionally winrepo_passphrase), is used to authenticate to SSH re-
motes.

winrepo_pubkey: /path/to/key.pub

winrepo_privkey

New in version 2015.8.0.
Default: ''

Along with winrepo_pubkey (and optionally winrepo_passphrase), is used to authenticate to SSH remotes.

winrepo_privkey: /path/to/key

winrepo_passphrase

New in version 2015.8.0.
Default: ''

This parameter is optional, required only when the SSH key being used to authenticate is protected by a passphrase.

winrepo_passphrase: mypassphrase

2.2 Configuring the Salt Minion

The Salt system is amazingly simple and easy to configure. The two components of the Salt system each have a
respective configuration file. The salt-master is configured via the master configuration file, and the salt-
minion is configured via the minion configuration file.

See also:
example minion configuration file

The Salt Minion configuration is very simple. Typically, the only value that needs to be set is the master value so the
minion knows where to locate its master.

By default, the salt-minion configuration will be in /etc/salt/minion. A notable exception is FreeBSD, where
the configuration will be in /usr/local/etc/salt/minion

2.2. Configuring the Salt Minion 93

Salt Documentation, Release 2016.3.4

2.2.1 Minion Primary Configuration

master

Default: salt
The hostname or ipv4 of the master.

Default: salt

master: salt

The option can can also be set to a list of masters, enabling multi-master mode.

master:
- addressl
- address2

Changed in version 2014.7.0: The master can be dynamically configured. The master value can be set to an module
function which will be executed and will assume that the returning value is the ip or hostname of the desired master.
If a function is being specified, then the master_type option must be set to func, to tell the minion that the value
is a function to be run and not a fully-qualified domain name.

master: module.function
master_type: func

In addition, instead of using multi-master mode, the minion can be configured to use the list of master addresses as
a failover list, trying the first address, then the second, etc. until the minion successfully connects. To enable this
behavior, set master_type to failover:

master:

- addressl

- address2
master_type: failover

master_type

New in version 2014.7.0.
Default: str

The type of the master variable. Can be str, failover or func.

master_type: failover

If this option is set to failover, master must be a list of master addresses. The minion will then try each master
in the order specified in the list until it successfully connects. master_alive_interval must also be set, this
determines how often the minion will verify the presence of the master.

master_type: func

If the master needs to be dynamically assigned by executing a function instead of reading in the static master value,
set this to func. This can be used to manage the minion's master setting from an execution module. By simply
changing the algorithm in the module to return a new master ip/fqdn, restart the minion and it will connect to the
new master.

94 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

max_event_size

New in version 2014.7.0.
Default: 1048576

Passing very large events can cause the minion to consume large amounts of memory. This value tunes the maximum
size of a message allowed onto the minion event bus. The value is expressed in bytes.

max_event_size: 1048576

master_failback

New in version 2016.3.0.
Default: False

If the minion is in multi-master mode and the :conf_minion master_type" configuration option is set to failover,
this setting can be set to True to force the minion to fail back to the first master in the list if the first master is back
online.

master_failback: False

master_failback_interval

New in version 2016.3.0.
Default: 0

If the minion is in multi-master mode, the :conf_minion master_type" configuration is set to failover, and the
master_failback option is enabled, the master failback interval can be set to ping the top master with this
interval, in seconds.

master_failback_interval: 0

master_alive_interval

Default: 0

Configures how often, in seconds, the minion will verify that the current master is alive and responding. The minion
will try to establish a connection to the next master in the list if it finds the existing one is dead.

master_alive_interval: 30

master_shuffle

New in version 2014.7.0.
Default: False

If master is alist of addresses and :conf_minion master_type" is failover, shuffle them before trying to connect
to distribute the minions over all available masters. This uses Python's random. shuffle method.

master_shuffle: True

2.2. Configuring the Salt Minion 95

https://docs.python.org/2/library/random.html#random.shuffle

Salt Documentation, Release 2016.3.4

random_master

Default: False

If master is a list of addresses, shuffle them before trying to connect to distribute the minions over all available
masters. This uses Python's random. randint method.

random_master: True

retry_dns

Default: 30

Set the number of seconds to wait before attempting to resolve the master hostname if name resolution fails. Defaults
to 30 seconds. Set to zero if the minion should shutdown and not retry.

retry_dns: 30

master_port

Default: 4506

The port of the master ret server, this needs to coincide with the ret_port option on the Salt master.

master_port: 4506

user

Default: root

The user to run the Salt processes

user: root

sudo_user

Default: ''

The user to run salt remote execution commands as via sudo. If this option is enabled then sudo will be used to
change the active user executing the remote command. If enabled the user will need to be allowed access via the
sudoers file for the user that the salt minion is configured to run as. The most common option would be to use the
root user. If this option is set the user option should also be set to a non-root user. If migrating from a root minion
to a non root minion the minion cache should be cleared and the minion pki directory will need to be changed to
the ownership of the new user.

sudo_user: root

pidfile

Default: /var/run/salt-minion.pid

The location of the daemon's process ID file

96 Chapter 2. Configuring Salt

https://docs.python.org/2/library/random.html#random.randint

Salt Documentation, Release 2016.3.4

pidfile: /var/run/salt-minion.pid

root_d1ir

Default: /

This directory is prepended to the following options: pki_dir, cachedir, log_file, sock_dir, and pid-
file.

root_dir: /

conf_file

Default: /etc/salt/minion

The path to the minion's configuration file.

conf_file: /etc/salt/minion

pki_dir

Default: /etc/salt/pki/minion

The directory used to store the minion's public and private keys.

pki_dir: /etc/salt/pki/minion

id

Default: the system's hostname
See also:

Salt Walkthrough

The Setting up a Salt Minion section contains detailed information on how the hostname is determined.

Explicitly declare the id for this minion to use. Since Salt uses detached ids it is possible to run multiple minions on
the same machine but with different ids.

id: foo.bar.com

minion_id_caching

New in version 0.17.2.
Default: True

Caches the minion id to a file when the minion's :minion_conf:"id" is not statically defined in the minion config.
This setting prevents potential problems when automatic minion id resolution changes, which can cause the minion
to lose connection with the master. To turn off minion id caching, set this config to False.

For more information, please see Issue #7558 and Pull Request #8488.

2.2. Configuring the Salt Minion 97

https://github.com/saltstack/salt/issues/7558
https://github.com/saltstack/salt/pull/8488

Salt Documentation, Release 2016.3.4

minion_id_caching: True

append_domain

Default: None

Append a domain to a hostname in the event that it does not exist. This is useful for systems where
socket.getfqdn() does not actually result in a FQDN (for instance, Solaris).

append_domain: foo.org

cachedir

Default: /var/cache/salt/minion
The location for minion cache data.

This directory may contain sensitive data and should be protected accordingly.

cachedir: /var/cache/salt/minion

append_minionid_config_dirs

Default: [] (the empty list) for regular minions, ['cachedir '] for proxy minions.

Append minion_id to these configuration directories. Helps with multiple proxies and minions running on the same
machine. Allowed elements in the list: pki_dir, cachedir, extension_modules. Normally not needed
unless running several proxies and/or minions on the same machine.

append_minionid_config_dirs:
- pki_dir
- cachedir

verify_env

Default: True

Verify and set permissions on configuration directories at startup.

verify_env: True

Note: When set to True the verify_env option requires WRITE access to the configuration directory (/etc/salt/).
In certain situations such as mounting /etc/salt/ as read-only for templating this will create a stack trace when
state.apply is called.

cache_jobs

Default: False

98 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

The minion can locally cache the return data from jobs sent to it, this can be a good way to keep track of the minion
side of the jobs the minion has executed. By default this feature is disabled, to enable set cache_jobs to True.

cache_jobs: False

minion_pillar_cache

Default: False

The minion can locally cache rendered pillar data under cachedir/pillar. This allows a temporarily dis-
connected minion to access previously cached pillar data by invoking salt-call with the --local and --
pillar_root=:conf_minion:cachedir/pillar options. Before enabling this setting consider that the rendered pillar may
contain security sensitive data. Appropriate access restrictions should be in place. By default the saved pillar
data will be readable only by the user account running salt. By default this feature is disabled, to enable set min-
ion_pillar_cache to True.

minion_pillar_cache: False

grains

Default: (empty)
See also:
Grains in the Minion Config

Statically assigns grains to the minion.

grains:
roles:
- webserver
- memcache
deployment: datacenter4
cabinet: 13
cab_u: 14-15

grains_cache

Default: False

The minion can locally cache grain data instead of refreshing the data each time the grain is referenced. By default
this feature is disabled, to enable set grains_cache to True.

grains_cache: False

grains_deep_merge

New in version 2016.3.0.
Default: False

The grains can be merged, instead of overridden, using this option. This allows custom grains to defined different
subvalues of a dictionary grain. By default this feature is disabled, to enable set grains_deep_merge to True.

2.2. Configuring the Salt Minion 99

Salt Documentation, Release 2016.3.4

grains_deep_merge: False

For example, with these custom grains functions:

def customl_k1():
return {'customil': {'ki1': 'v1'}}

def customl_k2():
return {'customil': {'k2': 'v2'}}

Without grains_deep_merge, the result would be:

customl:
kl: vl

With grains_deep_merge, the result will be:

customl:
kl: vl
k2: v2

mine_enabled

New in version 2015.8.10.
Default: True

Determines whether or not the salt minion should run scheduled mine updates. If this is set to False then the mine
update function will not get added to the scheduler for the minion.

mine_enabled: True

mine_return_job

New in version 2015.8.10.
Default: False

Determines whether or not scheduled mine updates should be accompanied by a job return for the job cache.

mine_return_job: False

mine_functions

Default: Empty

Designate which functions should be executed at mine_interval intervals on each minion. See this documentation on
the Salt Mine for more information. Note these can be defined in the pillar for a minion as well.

example minion configuration file

mine_functions:
test.ping: []
network.ip_addrs:
interface: etho
cidr: '10.0.0.0/8'

100 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

sock_dir

Default: /var/run/salt/minion

The directory where Unix sockets will be kept.

sock_dir: /var/run/salt/minion

backup_mode

Default: ''

Backup files replaced by file.managed and file.recurse under cachedir.

backup_mode: minion

acceptance_wait_time

Default: 10

The number of seconds to wait until attempting to re-authenticate with the master.

acceptance_wait_time: 10

acceptance_wait_time_max

Default: 0

The maximum number of seconds to wait until attempting to re-authenticate with the master. If set, the wait will
increase by acceptance_wait_time seconds each iteration.

acceptance_wait_time_max: 0

random_reauth_delay

Default: 10

When the master key changes, the minion will try to re-auth itself to receive the new master key. In larger envi-
ronments this can cause a syn-flood on the master because all minions try to re-auth immediately. To prevent this
and have a minion wait for a random amount of time, use this optional parameter. The wait-time will be a random
number of seconds between 0 and the defined value.

random_reauth_delay: 60

2.2. Configuring the Salt Minion 101

Salt Documentation, Release 2016.3.4

master_tries

New in version 2016.3.0.
Default: 1

The number of attempts to connect to a master before giving up. Set this to —1 for unlimited attempts. This allows
for a master to have downtime and the minion to reconnect to it later when it comes back up. In “failover' mode,
which is set in the master_type configuration, this value is the number of attempts for each set of masters. In
this mode, it will cycle through the list of masters for each attempt.

master_tries is different than auth_tries because auth_tries attempts to retry auth attempts with a
single master. auth_tries is under the assumption that you can connect to the master but not gain authorization
from it. master_tries will still cycle through all of the masters in a given try, so it is appropriate if you expect
occasional downtime from the master(s).

master_tries: 1

auth_tries

New in version 2014.7.0.
Default: 7

The number of attempts to authenticate to a master before giving up. Or, more technically, the number of consecutive
SaltReqTimeoutErrors that are acceptable when trying to authenticate to the master.

auth_tries: 7

auth_timeout

New in version 2014.7.0.
Default: 60

When waiting for a master to accept the minion's public key, salt will continuously attempt to reconnect until
successful. This is the timeout value, in seconds, for each individual attempt. After this timeout expires, the minion
will wait for acceptance_wait_time seconds before trying again. Unless your master is under unusually heavy
load, this should be left at the default.

auth_timeout: 60

auth_safemode

New in version 2014.7.0.
Default: False

If authentication fails due to SaltReqTimeoutError during a ping_interval, this setting, when set to True, will cause
a sub-minion process to restart.

auth_safemode: False

102 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

recon_default

Default: 1000

The interval in milliseconds that the socket should wait before trying to reconnect to the master (1000ms = 1 second).

recon_default: 1000

recon_max

Default: 10000

The maximum time a socket should wait. Each interval the time to wait is calculated by doubling the previous time.
If recon_max is reached, it starts again at the recon_default.

Short example:
« reconnect 1: the socket will wait “recon_default' milliseconds
« reconnect 2: ‘recon_default' * 2
« reconnect 3: (‘recon_default' * 2) * 2
« reconnect 4: value from previous interval * 2
« reconnect 5: value from previous interval * 2

« reconnect x: if value >= recon_max, it starts again with recon_default

recon_max: 10000

recon_randomize

Default: True

Generate a random wait time on minion start. The wait time will be a random value between recon_default and
recon_default + recon_max. Having all minions reconnect with the same recon_default and recon_max value kind
of defeats the purpose of being able to change these settings. If all minions have the same values and the setup is
quite large (several thousand minions), they will still flood the master. The desired behavior is to have time-frame
within all minions try to reconnect.

recon_randomize: True

return_retry_timer

Default: 5

The default timeout for a minion return attempt.

return_retry_timer: 5

2.2. Configuring the Salt Minion 103

Salt Documentation, Release 2016.3.4

return_retry_timer_max

Default: 10

The maximum timeout for a minion return attempt. If non-zero the minion return retry timeout will be a random
int between return_retry_timer and return_retry_timer_max

return_retry_timer_max: 10

cache_sreqs

Default: True

The connection to the master ret_port is kept open. When set to False, the minion creates a new connection for
every return to the master.

cache_sreqgs: True

ipc_mode

Default: ipc

Windows platforms lack POSIX IPC and must rely on slower TCP based inter- process communications. Set ipc_mode
to tcp on such systems.

ipc_mode: -1ipc

tcp_pub_port

Default: 4510

Publish port used when ipc_mode is set to tcp.

tcp_pub_port: 4510

tcp_pull_port

Default: 4511

Pull port used when ipc_mode is set to tcp.

tcp_pull_port: 4511

transport

Default: zeromq

Changes the underlying transport layer. ZeroMQ is the recommended transport while additional transport layers are
under development. Supported values are zeromq, raet (experimental), and tcp (experimental). This setting has
a significant impact on performance and should not be changed unless you know what you are doing! Transports
are explained in Salt Transports.

104 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

transport: zeromq

syndic_finger

Default: ''

The key fingerprint of the higher-level master for the syndic to verify it is talking to the intended master.

syndic_finger: 'ab:30:65:2a:d6:9e:20:4f:d8:b2:f3:a7:d4:65:50:10"'

proxy_host

Default: ''

The hostname used for HTTP proxy access.

proxy_host: proxy.my-domain

proxy_port

Default: 0
The port number used for HTTP proxy access.

proxy_port: 31337

proxy_username

Default: "'

The username used for HTTP proxy access.

proxy_username: charon

proxy_password

Default: ''

The password used for HTTP proxy access.

proxy_password: obolus

2.2.2 Minion Module Management

disable_modules

Default: [] (all modules are enabled by default)

The event may occur in which the administrator desires that a minion should not be able to execute a certain module.
The sys module is built into the minion and cannot be disabled.

2.2. Configuring the Salt Minion 105

Salt Documentation, Release 2016.3.4

This setting can also tune the minion. Because all modules are loaded into system memory, disabling modules will
lover the minion's memory footprint.

Modules should be specified according to their file name on the system and not by their virtual name. For example,
to disable cmd, use the string cmdmod which corresponds to salt.modules.cmdmod.

disable_modules:
- test
- solr

disable_returners

Default: [] (all returners are enabled by default)

If certain returners should be disabled, this is the place

disable_returners:
- mongo_return

module_dirs

Default: []

A list of extra directories to search for Salt modules

module_dirs:
- /var/lib/salt/modules

returner_dirs

Default: []

A list of extra directories to search for Salt returners

returner_dirs:
- /var/lib/salt/returners

states_dirs

Default: []

A list of extra directories to search for Salt states

states_dirs:
- /var/lib/salt/states

grains_dirs

Default: []

A list of extra directories to search for Salt grains

106 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

grains_dirs:
- /var/lib/salt/grains

render_dirs

Default: []

A list of extra directories to search for Salt renderers

render_dirs:
- /var/lib/salt/renderers

cython_enable

Default: False

Set this value to true to enable auto-loading and compiling of . pyx modules, This setting requires that gcc and
cython are installed on the minion.

cython_enable: False

enable_zip_modules

New in version 2015.8.0.
Default: False

Set this value to true to enable loading of zip archives as extension modules. This allows for packing module code with
specific dependencies to avoid conflicts and/or having to install specific modules' dependencies in system libraries.

enable_zip_modules: False

providers

Default: (empty)

A module provider can be statically overwritten or extended for the minion via the providers option. This can
be done on an individual basis in an SLS file, or globally here in the minion config, like below.

providers:
service: systemd

2.2.3 State Management Settings

renderer

Default: yaml_jinja

The default renderer used for local state executions

renderer: yaml_jinja

2.2. Configuring the Salt Minion 107

Salt Documentation, Release 2016.3.4

state_verbose

Default: True

Controls the verbosity of state runs. By default, the results of all states are returned, but setting this value to False
will cause salt to only display output for states that failed or states that have changes.

state_verbose: True

state_output

Default: full

The state_output setting changes if the output is the full multi line output for each changed state if set to “full', but
if set to “terse' the output will be shortened to a single line.

state_output: full

autoload_dynamic_modules

Default: True

autoload_dynamic_modules turns on automatic loading of modules found in the environments on the master. This
is turned on by default. To turn off auto-loading modules when states run, set this value to False.

autoload_dynamic_modules: True

Default: True

clean_dynamic_modules keeps the dynamic modules on the minion in sync with the dynamic modules on the master.
This means that if a dynamic module is not on the master it will be deleted from the minion. By default this is enabled
and can be disabled by changing this value to False.

clean_dynamic_modules: True

environment

Normally the minion is not isolated to any single environment on the master when running states, but the environ-
ment can be isolated on the minion side by statically setting it. Remember that the recommended way to manage
environments is to isolate via the top file.

environment: dev

state_top_saltenv

This option has no default value. Set it to an environment name to ensure that only the top file from that environment
is considered during a highstate.

Note: Using this value does not change the merging strategy. For instance, if top_file_merging_strategy
is left at its default, and state_top_saltenv is set to foo, then any sections for environments other than foo

108 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

in the top file for the foo environment will be ignored. With state_top_saltenv set to base, all states from
all environments in the base top file will be applied, while all other top files are ignored.

state_top_saltenv: dev

top_file_merging_strategy

Default: merge

When no specific fileserver environment (a.k.a. saltenv) has been specified for a highstate, all environments' top
files are inspected. This config option determines how the SLS targets in those top files are handled.

When set to the default value of merge, all SLS files are interpreted. The first target expression for a given environ-
ment is kept, and when the same target expression is used in a different top file evaluated later, it is ignored. The
environments will be evaluated in no specific order, for greater control over the order in which the environments
are evaluated use env_order.

When set to same, then for each environment, only that environment's top file is processed, with the others being
ignored. For example, only the dev environment's top file will be processed for the dev environment, and any
SLS targets defined for dev in the base environment's (or any other environment's) top file will be ignored. If an
environment does not have a top file, then the top file from the default_top config parameter will be used as a
fallback.

top_file_merging_strategy: same

env_order

Default: []

When top_file_merging_strategy is set to merge, and no environment is specified for a highstate, this
config option allows for the order in which top files are evaluated to be explicitly defined.

env_order:
- base
- dev

- qga

default_top

Default: base

When top_file_merging_strategy is set to same, and no environment is specified for a highstate, this
config option specifies a fallback environment in which to look for a top file if an environment lacks one.

default_top: dev

2.2.4 File Directory Settings
file_client

Default: remote

2.2. Configuring the Salt Minion 109

Salt Documentation, Release 2016.3.4

The client defaults to looking on the master server for files, but can be directed to look on the minion by setting this
parameter to Loca'l.

file_client: remote

use_master_when_local

Default: False

When using a local file_client, this parameter is used to allow the client to connect to a master for remote
execution.

use_master_when_local: False

file_roots

Default:

base:
- /srv/salt

When using a local i le_client, this parameter is used to setup the fileserver's environments. This parameter
operates identically to the master config parameter of the same name.

file_roots:

base:
- /srv/salt

dev:
- /srv/salt/dev/services
- /srv/salt/dev/states

prod:
- /srv/salt/prod/services
- /srv/salt/prod/states

fileserver_followsymlinks

New in version 2014.1.0.
Default: True

By default, the file_server follows symlinks when walking the filesystem tree. Currently this only applies to the
default roots fileserver_backend.

fileserver_followsymlinks: True

fileserver_ignoresymlinks

New in version 2014.1.0.
Default: False

If you do not want symlinks to be treated as the files they are pointing to, set fileserver_ignoresymlinks
to True. By default this is set to False. When set to True, any detected symlink while listing files on the Master
will not be returned to the Minion.

110 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

fileserver_ignoresymlinks: False

fileserver_limit_traversal

New in version 2014.1.0.
Default: False

By default, the Salt fileserver recurses fully into all defined environments to attempt to find files. To limit this
behavior so that the fileserver only traverses directories with SLS files and special Salt directories like _modules, set
fileserver_limit_traversal to True. This might be useful for installations where a file root has a very
large number of files and performance is impacted.

fileserver_limit_traversal: False

hash_type

Default: md5

The hash_type is the hash to use when discovering the hash of a file on the local fileserver. The default is md5, but
shal, sha224, sha256, sha384, and sha512 are also supported.

hash_type: md5

2.2.5 Pillar Settings
pillar_roots

Default:

base:
- /srv/pillar

When using a local file_client, this parameter is used to setup the pillar environments.

pillar_roots:
base:
- /srv/pillar
dev:
- /srv/pillar/dev
prod:
- /srv/pillar/prod

pillarenv

Default: None

Isolates the pillar environment on the minion side. This functions the same as the environment setting, but for pillar
instead of states.

pillarenv: None

2.2. Configuring the Salt Minion 111

Salt Documentation, Release 2016.3.4

file_recv_max_size

New in version 2014.7.0.
Default: 100

Set a hard-limit on the size of the files that can be pushed to the master. It will be interpreted as megabytes.

file_recv_max_size: 100

2.2.6 Security Settings
open_mode

Default: False

Open mode can be used to clean out the PKI key received from the Salt master, turn on open mode, restart the minion,
then turn off open mode and restart the minion to clean the keys.

open_mode: False

master_finger

Default: '

Fingerprint of the master public key to validate the identity of your Salt master before the initial key exchange. The
master fingerprint can be found by running *salt-key -F master” on the Salt master.

master_finger: 'ba:30:65:2a:d6:9e:20:4f:d8:b2:f3:a7:d4:65:11:13"

verify_master_pubkey_sign

Default: False

Enables verification of the master-public-signature returned by the master in auth-replies. Please see the tutorial on
how to configure this properly Multimaster-PKI with Failover Tutorial

New in version 2014.7.0.

verify_master_pubkey_sign: True

If this is set to True, master_sign_pubkey must be also set to True in the master configuration file.

master_sign_key_name

Default: master_sign

The filename without the .pub suffix of the public key that should be used for verifying the signature from the master.
The file must be located in the minion's pki directory.

New in version 2014.7.0.

master_sign_key_name: <filename_without_suffix>

112 Chapter 2. Configuring Salt

http://docs.saltstack.com/en/latest/topics/tutorials/multimaster_pki.html

Salt Documentation, Release 2016.3.4

always_verify_signature

Default: False

If verify_master_pubkey_sign is enabled, the signature is only verified if the public-key of the master
changes. If the signature should always be verified, this can be set to True.

New in version 2014.7.0.

always_verify_signature: True

2.2.7 Thread Settings

Default: True

If multiprocessing is enabled when a minion receives a publication a new process is spawned and the command is
executed therein. Conversely, if multiprocessing is disabled the new publication will be run executed in a thread.

multiprocessing: True

2.2.8 Minion Logging Settings
log_file

Default: /var/log/salt/minion
The minion log can be sent to a regular file, local path name, or network location. See also log_f1ile.

Examples:

’ log_file: /var/log/salt/minion

’ log_file: file:///dev/log

’ log_file: udp://loghost:10514

log_level

Default: warning

The level of messages to send to the console. See also log_level.

log_level: warning

log_level_logfile

Default: info

The level of messages to send to the log file. See also log_level_logfile. When it is not set explicitly it will
inherit the level set by log_ level option.

log_level_logfile: warning

2.2. Configuring the Salt Minion 113

Salt Documentation, Release 2016.3.4

log_datefmt

Default: %H : %M : %S

The date and time format used in console log messages. See also Log_datefmt.

log_datefmt: '%H:%M:%S'

log_datefmt_logfile

Default: %Y-%m-%d %H:%M:%S

The date and time format used in log file messages. See also log_datefmt_logfile.

log_datefmt_logfile: '%Y-%m-%d %H:%M:%S"'

log_fmt_console

Default: [%(levelname)-8s] %(message)s

The format of the console logging messages. See also Llog_fmt_console.

Note: Log colors are enabled in Llog_fmt_console rather than the color config since the logging system is
loaded before the minion config.

Console log colors are specified by these additional formatters:
%(colorlevel)s %(colorname)s %(colorprocess)s %(colormsg)s

Since it is desirable to include the surrounding brackets, '[' and "], in the coloring of the messages, these color
formatters also include padding as well. Color LogRecord attributes are only available for console logging.

log_fmt_console: '%(colorlevel)s %(colormsg)s'
log_fmt_console: '[%(levelname)-8s] %(message)s'

log_fmt_logfile

Default: % (asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s

The format of the log file logging messages. See also log_fmt_logfile.

log_fmt_logfile: '%(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s'

log_granular_levels

Default: {}

This can be used to control logging levels more specifically. See also log_granular_levels.

114 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

zmq_mon+itor

Default: False

To diagnose issues with minions disconnecting or missing returns, ZeroMQ supports the use of monitor sockets to
log connection events. This feature requires ZeroMQ 4.0 or higher.

To enable ZeroMQ monitor sockets, set ‘zmq_monitor' to "True' and log at a debug level or higher.

A sample log event is as follows:

[DEBUG 1 ZeroMQ event: {'endpoint': 'tcp://127.0.0.1:4505', 'event': 512,
'value': 27, 'description': 'EVENT_DISCONNECTED'}

All events logged will include the string ZeroMQ event. A connection event should be logged as the minion starts
up and initially connects to the master. If not, check for debug log level and that the necessary version of ZeroMQ
is installed.

failhard

Default: False

Set the global failhard flag. This informs all states to stop running states at the moment a single state fails

failhard: False

2.2.9 Include Configuration

default_include

Default: minion.d/*.conf

The minion can include configuration from other files. Per default the minion will automatically include all config
files from minion.d/*.conf where minion.d is relative to the directory of the minion configuration file.

Note: Salt creates files in the minion.d directory for its own use. These files are prefixed with an underscore. A
common example of this is the _schedule. conf file.

include

Default: not defined

The minion can include configuration from other files. To enable this, pass a list of paths to this option. The paths
can be either relative or absolute; if relative, they are considered to be relative to the directory the main minion
configuration file lives in. Paths can make use of shell-style globbing. If no files are matched by a path passed to this
option then the minion will log a warning message.

Include files from a minion.d directory in the same
directory as the minion config file
include: minion.d/*.conf

Include a single extra file into the configuration
include: /etc/roles/webserver

2.2. Configuring the Salt Minion 115

Salt Documentation, Release 2016.3.4

Include several files and the minion.d directory
include:

- extra_config

- minion.d/*

- Jetc/roles/webserver

2.2.10 Frozen Build Update Settings

These options control how salt.modules.saltutil.update () works with esky frozen apps. For more in-
formation look at https://github.com/cloudmatrix/esky/.

update_url

Default: False (Update feature is disabled)

The url to use when looking for application updates. Esky depends on directory listings to search for new versions.
A webserver running on your Master is a good starting point for most setups.

update_url: 'http://salt.example.com/minion-updates'

update_restart_services

Default: [] (service restarting on update is disabled)

A list of services to restart when the minion software is updated. This would typically just be a list containing the
minion's service name, but you may have other services that need to go with it.

update_restart_services: ['salt-minion']

2.2.11 Standalone Minion Windows Software Repo Settings

Important: To use these config options, the minion must be running in masterless mode (set file_client to

local).

winrepo_dir

Changed in version 2015.8.0: Renamed from win_repo to winrepo_d-ir. Also, this option did not have a default
value until this version.

Default: C:\salt\srv\salt\win\repo

Location on the minion where the winrepo_remotes are checked out.

winrepo_dir: 'D:\winrepo'

116 Chapter 2. Configuring Salt

https://github.com/cloudmatrix/esky/

Salt Documentation, Release 2016.3.4

winrepo_cachefile

Changed in version 2015.8.0: Renamed from win_repo_cachefile to winrepo_cachefile. Also, this op-
tion did not have a default value until this version.

Default: winrepo.p

Path relative to winrepo_dir where the winrepo cache should be created.

winrepo_cachefile: winrepo.p

winrepo_remotes

Changed in version 2015.8.0: Renamed from win_gitrepos to winrepo_remotes. Also, this option did not
have a default value until this version.

New in version 2015.8.0.

Default: ['https://github.com/saltstack/salt-winrepo.git']

List of git repositories to checkout and include in the winrepo

winrepo_remotes:
- https://github.com/saltstack/salt-winrepo.git

To specify a specific revision of the repository, prepend a commit ID to the URL of the the repository:

winrepo_remotes:
- '<commit_id> https://github.com/saltstack/salt-winrepo.git'

Replace <commit_id> with the SHA1 hash of a commit ID. Specifying a commit ID is useful in that it allows one
to revert back to a previous version in the event that an error is introduced in the latest revision of the repo.

2.3 Configuration file examples

« Example master configuration file

o Example minion configuration file

2.3.1 Example master configuration file

Primary configuration settings
HHBHAHBRARBRARRAABBAABRBARR AR RARBRARR AR R

This configuration file is used to manage the behavior of the Salt Master.
Values that are commented out but have an empty line after the comment are
defaults that do not need to be set in the config. If there is no blank line
after the comment then the value is presented as an example and is not the
default.

HoH W™ R

RS

Per default, the master will automatically include all config files
from master.d/*.conf (master.d is a directory in the same directory
as the main master config file).

HH

2.3. Configuration file examples 117

Salt Documentation, Release 2016.3.4

#default_include: master.d/*.conf

The address of the interface to bind to:
#interface: 0.0.0.0

Whether the master should listen for IPv6 connections. If this is set to True,
the interface option must be adjusted, too. (For example: "interface: '::'")
#1pv6: False

The tcp port used by the publisher:
#publish_port: 4505

The user under which the salt master will run. Salt will update all

permissions to allow the specified user to run the master. The exception 1is
the job cache, which must be deleted if this user is changed. If the

modified files cause conflicts, set verify_env to False.

#user: root

The port used by the communication interface. The ret (return) port is the
interface used for the file server, authentication, job returns, etc.
#ret_port: 4506

Specify the location of the daemon process ID file:
#pidfile: /var/run/salt-master.pid

The root directory prepended to these options: pki_dir, cachedir,

sock_dir, log_file, autosign_file, autoreject_file, extension_modules,
key_logfile, pidfile:

#root_dir: /

The path to the master's configuration file.
#conf_file: /etc/salt/master

Directory used to store public key data:
#pki_dir: /etc/salt/pki/master

Directory to store job and cache data:

This directory may contain sensitive data and should be protected accordingly.
#

#cachedir: /var/cache/salt/master

Directory for custom modules. This directory can contain subdirectories for
each of Salt's module types such as "runners", "output'", "wheel", "modules",
"states", "returners", etc.

#extension_modules: <no default>

Directory for custom modules. This directory can contain subdirectories for
each of Salt's module types such as "runners", "output'", "wheel", "modules",
"states'", '"returners", "engines', etc.

Like 'extension_modules' but can take an array of paths

#module_dirs: <no default>

- /Jvar/cache/salt/minion/extmods

Verify and set permissions on configuration directories at startup:
#verify_env: True

Set the number of hours to keep old job information in the job cache:
#keep_jobs: 24

118 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

The number of seconds to wait when the client is requesting information
about running jobs.
#gather_job_timeout: 10

Set the default timeout for the salt command and api. The default is 5
seconds.
#timeout: 5

The loop_1interval option controls the seconds for the master's maintenance
process check cycle. This process updates file server backends, cleans the
job cache and executes the scheduler.

#loop_1interval: 60

Set the default outputter used by the salt command. The default is "nested".
#output: nested

Set the default output file used by the salt command. Default is to output
to the CLI and not to a file. Functions the same way as the "--out-file"

CLI option, only sets this to a single file for all salt commands.
#output_file: None

Return minions that timeout when running commands like test.ping
#show_timeout: True

By default, output is colored. To disable colored output, set the color value
to False.
#color: True

Do not strip off the colored output from nested results and state outputs
(true by default).
strip_colors: False

To display a summary of the number of minions targeted, the number of
minions returned, and the number of minions that did not return, set the
cli_summary value to True. (False by default.)

T OH W W

#cli_summary: False

Set the directory used to hold unix sockets:
#sock_dir: /var/run/salt/master

The master can take a while to start up when lspci and/or dmidecode is used

to populate the grains for the master. Enable if you want to see GPU hardware
data for your master.

enable_gpu_grains: False

The master maintains a job cache. While this is a great addition, it can be

a burden on the master for larger deployments (over 5000 minions).

Disabling the job cache will make previously executed jobs unavailable to

the jobs system and is not generally recommended.

#job_cache: True

Cache minion grains and pillar data in the cachedir.
#minion_data_cache: True

Store all returns in the given returner.
Setting this option requires that any returner-specific configuration also

2.3. Configuration file examples 119

Salt Documentation, Release 2016.3.4

be set. See various returners in salt/returners for details on required
configuration values. (See also, event_return_queue below.)

#

#event_return: mysql

On busy systems, enabling event_returns can cause a considerable load on

the storage system for returners. Events can be queued on the master and

stored in a batched fashion using a single transaction for multiple events.
By default, events are not queued.

#event_return_queue: 0O

Only return events matching tags in a whitelist,

event_return_whitelist:

- salt/master/a_tag

- salt/master/another_tag

Store all event returns _except_ the tags in a blacklist.
event_return_blacklist:

- salt/master/not_this_tag

- salt/master/or_this_one

Passing very large events can cause the minion to consume large amounts of
memory. This value tunes the maximum size of a message allowed onto the

master event bus. The value is expressed in bytes.

#max_event_size: 1048576

By default, the master AES key rotates every 24 hours. The next command

following a key rotation will trigger a key refresh from the minion which may
result in minions which do not respond to the first command after a key refresh.
#

To tell the master to ping all minions immediately after an AES key refresh, set
ping_on_rotate to True. This should mitigate the issue where a minion does not
appear to initially respond after a key is rotated.

#

Note that ping_on_rotate may cause high load on the master immediately after

the key rotation event as minions reconnect. Consider this carefully if this

salt master is managing a large number of minions.

#

If disabled, it is recommended to handle this event by listening for the

'aes_key_rotate' event with the 'key' tag and acting appropriately.

ping_on_rotate: False

By default, the master deletes its cache of minion data when the key for that
minion is removed. To preserve the cache after key deletion, set

'preserve_minion_cache' to True.

#

WARNING: This may have security implications if compromised minions auth with
a previous deleted minion ID.

#preserve_minion_cache: False

If max_minions is used in large installations, the master might experience
high-load situations because of having to check the number of connected
minions for every authentication. This cache provides the minion-ids of
all connected minions to all MWorker-processes and greatly improves the
performance of max_minions.

con_cache: False

R B W R R

The master can include configuration from other files. To enable this,

120 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

pass a list of paths to this option. The paths can be either relative or
absolute; 1if relative, they are considered to be relative to the directory
the main master configuration file lives in (this file). Paths can make use
of shell-style globbing. If no files are matched by a path passed to this
option, then the master will log a warning message.

Include a config file from some other path:
include: /etc/salt/extra_config

Include config from several files and directories:
include:
- /etc/salt/extra_config

Large-scale tuning settings Hit#HH
HARABHARGRARABRBRARARRRRARARARAGRARARABHRGH
Max open files

Each minion connecting to the master uses AT LEAST one file descriptor, the
master subscription connection. If enough minions connect you might start
seeing on the console (and then salt-master crashes):

Too many open files (tcp_listener.cpp:335)

Aborted (core dumped)

By default this value will be the one of ‘ulimit -Hn', ie, the hard limit for
max open files.

If you wish to set a different value than the default one, uncomment and
configure this setting. Remember that this value CANNOT be higher than the
hard limit. Raising the hard limit depends on your 0S and/or distribution,
a good way to find the limit is to search the internet. For example:

raise max open files hard limit debian

TR P I OH OH I OH K W R K W™ W R R

#max_open_files: 100000

The number of worker threads to start. These threads are used to manage
return calls made from minions to the master. If the master seems to be
running slowly, increase the number of threads. This setting can not be
set lower than 3.
#worker_threads: 5

T OH W R

Set the ZeroMQ high water marks
http://api.zeromq.org/3-2:zmq-setsockopt

The publisher interface ZeroMQPubServerChannel
#pub_hwm: 1000

These two ZMQ HWM settings, salt_event_pub_hwm and event_publisher_pub_hwm
are significant for masters with thousands of minions. When these are
insufficiently high it will manifest in random responses missing in the CLI
and even missing from the job cache. Masters that have fast CPUs and many
cores with appropriate worker_threads will not need these set as high.

IO R B R

On deployment with 8,000 minions, 2.4GHz CPUs, 24 cores, 32GiB memory has
these settings:

salt_event_pub_hwm: 128000
event_publisher_pub_hwm: 64000

2.3. Configuration file examples 121

Salt Documentation, Release 2016.3.4

ZMQ high-water-mark for SaltEvent pub socket
#salt_event_pub_hwm: 20000

ZMQ high-water-mark for EventPublisher pub socket
#event_publisher_pub_hwm: 10000

The master may allocate memory per-event and not
reclaim 1it.

To set a high-water mark for memory allocation, use
ipc_write_buffer to set a high-water mark for message
buffering.

Value: In bytes. Set to 'dynamic' to have Salt select
a value for you. Default is disabled.
ipc_write_buffer: 'dynamic'

TR OFH O H H W™ R

i Security settings Hit##
HABARABAABRARBRABBARBRARBRARBARBRARRR AR RAHS

Enable '"open mode", this mode still maintains encryption, but turns off

authentication, this is only intended for highly secure environments or for
the situation where your keys end up in a bad state. If you run in open mode
you do so at your own risk!

#open_mode: False

Enable auto_accept, this setting will automatically accept all incoming
public keys from the minions. Note that this is insecure.
#auto_accept: False

Time in minutes that a incoming public key with a matching name found in
pki_dir/minion_autosign/keyid is automatically accepted. Expired autosign keys
are removed when the master checks the minion_autosign directory.

0 equals no timeout

autosign_timeout: 120

EIRE

If the autosign_file is specified, incoming keys specified in the

autosign_file will be automatically accepted. This is insecure. Regular
expressions as well as globing lines are supported.

#autosign_file: /etc/salt/autosign.conf

Works like autosign_file, but instead allows you to specify minion IDs for
which keys will automatically be rejected. Will override both membership in
the autosign_file and the auto_accept setting.

#autoreject_file: /Jetc/salt/autoreject.conf

Enable permissive access to the salt keys. This allows you to run the

master or minion as root, but have a non-root group be given access to

your pki_dir. To make the access explicit, root must belong to the group
you've given access to. This is potentially quite insecure. If an autosign_file
is specified, enabling permissive_pki_access will allow group access to that
specific file.

#permissive_pki_access: False

TR W W W R

Allow users on the master access to execute specific commands on minions.
This setting should be treated with care since it opens up execution

capabilities to non root users. By default this capability is completely
disabled.

#pulisher_acl:

122 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

larry:

- test.ping

- network. *

#

Blacklist any of the following users or modules

#

This example would blacklist all non sudo users, including root from
running any commands. It would also blacklist any use of the "cmd"

module. This is completely disabled by default.

#

#

Check the list of configured users in client ACL against users on the
system and throw errors if they do not exist.

#client_acl_verify: True

#

#publisher_acl_blacklist:

users:

- root

- '"nN(?!sudo_).xS' # all non sudo users

modules:

- cmd

#

WARNING: client_acl and client_acl_blacklist options are deprecated and will
be removed in the future releases. Use publisher_acl and

publisher_acl_blacklist instead.

Enforce publisher_acl & publisher_acl_blacklist when users have sudo
access to the salt command.

#

#sudo_acl: False

The external auth system uses the Salt auth modules to authenticate and
validate users to access areas of the Salt system.
#external_auth:

pam:

fred:

- test.x
#

Time (in seconds) for a newly generated token to live. Default: 12 hours
#token_expire: 43200

Allow minions to push files to the master. This is disabled by default, for
security purposes.
#file_recv: False

Set a hard-limit on the size of the files that can be pushed to the master.
It will be interpreted as megabytes. Default: 100
#file_recv_max_size: 100

Signature verification on messages published from the master.
This causes the master to cryptographically sign all messages published to its event
bus, and minions then verify that signature before acting on the message.

This is False by default.
Note that to facilitate interoperability with masters and minions that are different

versions, if sign_pub_messages is True but a message is received by a minion with
no signature, it will still be accepted, and a warning message will be logged.

o W OH R W W R R

2.3. Configuration file examples 123

Salt Documentation, Release 2016.3.4

Conversely, if sign_pub_messages is False, but a minion receives a signed

message it will be accepted, the signature will not be checked, and a warning message
will be logged. This behavior went away in Salt 2014.1.0 and these two situations

will cause minion to throw an exception and drop the message.

sign_pub_messages: False

#itH Salt-SSH Configuration it

HERHAARARARAGRARARABRARARAB ARG RARARARB AR

Pass in an alternative location for the salt-ssh roster file
#roster_file: /etc/salt/roster

Pass in minion option overrides that will be inserted into the SHIM for
salt-ssh calls. The local minion config is not used for salt-ssh. Can be
overridden on a per-minion basis in the roster (minion_opts")
#ssh_minion_opts:

gpg_keydir: /root/gpg

HitH## Master Module Management Hitt##
HABHAHBAABHAGRAAGRAABRAGRRARRAARRARRHR AR RAHS
Manage how master side modules are loaded.

Add any additional locations to look for master runners:
#runner_dirs: []

Enable Cython for master side modules:
#cython_enable: False

HH#HR#H State System settings H#HR#H
HABARABARBHAHBRARBAABRARRAARRBARBRAHRR AR RAHS

The state system uses a "top" file to tell the minions what environment to
use and what modules to use. The state_top file is defined relative to the
root of the base environment as defined in "File Server settings'" below.
#state_top: top.sls

The master_tops option replaces the external_nodes option by creating
a plugable system for the generation of external top data. The external_nodes
option is deprecated by the master_tops option.

To gain the capabilities of the classic external_nodes system, use the
following configuration:
master_tops:

ext_nodes: <Shell command which returns yaml>

IR OB O OH W W H W

#master_tops: {}

The external_nodes option allows Salt to gather data that would normally be
placed in a top file. The external_nodes option is the executable that will
return the ENC data. Remember that Salt will look for external nodes AND top
files and combine the results if both are enabled!

#external_nodes: None

The renderer to use on the minions to render the state data
#renderer: yaml_jinja

The Jinja renderer can strip extra carriage returns and whitespace
See http://jinja.pocoo.org/docs/api/#high-level-api

124 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

#

If this is set to True the first newline after a Jinja block is removed

(block, not variable tag!). Defaults to False, corresponds to the Jinja

environment init variable "trim_blocks".

#jinja_trim_blocks: False

#

If this is set to True leading spaces and tabs are stripped from the start
of a line to a block. Defaults to False, corresponds to the Jinja

environment init variable "lstrip_blocks".

#jinja_lstrip_blocks: False

The failhard option tells the minions to stop immediately after the first
failure detected in the state execution, defaults to False
#failhard: False

The state_verbose and state_output settings can be used to change the way

state system data is printed to the display. By default all data is printed.
The state_verbose setting can be set to True or False, when set to False

all data that has a result of True and no changes will be suppressed.
#state_verbose: True

The state_output setting changes if the output is the full multi line

output for each changed state if set to 'full', but if set to 'terse'

the output will be shortened to a single line. If set to 'mixed', the output
will be terse unless a state failed, in which case that output will be full.
If set to 'changes', the output will be full unless the state didn't change.
#state_output: full

R B B R

Automatically aggregate all states that have support for mod_aggregate by
setting to 'True'. Or pass a list of state module names to automatically
aggregate just those types.

#
#
#
#
state_aggregate:
- pkg

#

#state_aggregate: False

Send progress events as each function in a state run completes execution
by setting to 'True'. Progress events are in the format

'salt/job/<JID>/prog/<MID>/<RUN NUM>'.

#state_events: False

HitH## File Server settings HitH##
AARBHABBHAAAABHBRRAAARSRRRBHRARAARRHRRAA AR

Salt runs a lightweight file server written in zeromq to deliver files to
minions. This file server is built into the master daemon and does not

require a dedicated port.

The file server works on environments passed to the master, each environment
can have multiple root directories, the subdirectories in the multiple file
roots cannot match, otherwise the downloaded files will not be able to be

reliably ensured. A base environment is required to house the top file.

Example:

file_roots:

base:

- /srv/salt/

dev:

#

- /srv/salt/dev/services

2.3. Configuration file examples 125

Salt Documentation, Release 2016.3.4

- /srv/salt/dev/states
prod:

- /srv/salt/prod/services

- /srv/salt/prod/states

file_roots:
base:
- /srv/salt

TR W O OH W W B R

When using multiple environments, each with their own top file, the
default behaviour is an unordered merge. To prevent top files from
being merged together and instead to only use the top file from the
requested environment, set this value to 'same'.
#top_file_merging_strategy: merge

H o W R

To specify the order in which environments are merged, set the ordering
in the env_order option. Given a conflict, the last matching value will
win.

#env_order: ['base', 'dev', 'prod']

If top_file_merging_strategy is set to 'same' and an environment does not

contain a top file, the top file in the environment specified by default_top
will be used instead.

#default_top: base

The hash_type is the hash to use when discovering the hash of a file on
the master server. The default is md5 but shal, sha224, sha256, sha384
and sha512 are also supported.

WARNING: While md5 is supported, do not use it due to the high chance
of possible collisions and thus security breach.

Prior to changing this value, the master should be stopped and all Salt
caches should be cleared.
#hash_type: md5

HoH OB O K W W R R

The buffer size in the file server can be adjusted here:
#file_buffer_size: 1048576

A regular expression (or a list of expressions) that will be matched

against the file path before syncing the modules and states to the minions.
This includes files affected by the file.recurse state.

For example, 1f you manage your custom modules and states in subversion

and don't want all the '.svn' folders and content synced to your minions,

you could set this to '/\.svn($|/)'. By default nothing is ignored.
#file_ignore_regex:

- '/\.svn(s|/)!

#o- /\.git(s|/)"

A file glob (or list of file globs) that will be matched against the file
path before syncing the modules and states to the minions. This is similar
to file_1ignore_regex above, but works on globs instead of regex. By default
nothing is ignored.

file_ignore_glob:

- 'x.pyc'’

- 'x/somefolder/x.bak'

- '"x.swp'

126 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

File Server Backend

#

Salt supports a modular fileserver backend system, this system allows

the salt master to link directly to third party systems to gather and

manage the files available to minions. Multiple backends can be

configured and will be searched for the requested file in the order in which
they are defined here. The default setting only enables the standard backend
"roots" which uses the "file_roots" option.

#fileserver_backend:

- roots

#

To use multiple backends list them in the order they are searched:
#fileserver_backend:
- git

- roots

Uncomment the line below if you do not want the file_server to follow
symlinks when walking the filesystem tree. This is set to True

by default. Currently this only applies to the default roots
fileserver_backend.

fileserver_followsymlinks: False

#

#

#

#

#

#

#

#

Uncomment the line below if you do not want symlinks to be

treated as the files they are pointing to. By default this is set to

False. By uncommenting the line below, any detected symlink while listing
files on the Master will not be returned to the Minion.
#fileserver_ignoresymlinks: True
#
#
#
#
#
#
#
#
#
#
#
#

By default, the Salt fileserver recurses fully into all defined environments

to attempt to find files. To limit this behavior so that the fileserver only
traverses directories with SLS files and special Salt directories like _modules,
enable the option below. This might be useful for installations where a file root
has a very large number of files and performance is impacted. Default is False.
fileserver_limit_traversal: False

The fileserver can fire events off every time the fileserver is updated,
these are disabled by default, but can be easily turned on by setting this
flag to True

fileserver_events: False

Git File Server Backend Configuration

Optional parameter used to specify the provider to be used for gitfs. Must
be one of the following: pygit2, gitpython, or dulwich. If unset, then each
will be tried in that same order, and the first one with a compatible
version installed will be the provider that is used.

#gitfs_provider: pygit2

R W B K R

Along with gitfs_password, is used to authenticate to HTTPS remotes.
gitfs_user: '’

Along with gitfs_user, is used to authenticate to HTTPS remotes.
This parameter is not required if the repository does not use authentication.
#gitfs_password: "'

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote.
This parameter enables authentication over HTTP. Enable this at your own risk.

2.3. Configuration file examples

127

Salt Documentation, Release 2016.3.4

#gitfs_insecure_auth: False

Along with gitfs_privkey (and optionally gitfs_passphrase), is used to

authenticate to SSH remotes. This parameter (or its per-remote counterpart)
i1s required for SSH remotes.

#gitfs_pubkey: '’

Along with gitfs_pubkey (and optionally gitfs_passphrase), is used to

authenticate to SSH remotes. This parameter (or its per-remote counterpart)
1s required for SSH remotes.

#gitfs_privkey: "'

This parameter is optional, required only when the SSH key being used to
authenticate is protected by a passphrase.
#gitfs_passphrase: ''

When using the git fileserver backend at least one git remote needs to be
defined. The user running the salt master will need read access to the repo.

The repos will be searched in order to find the file requested by a client
and the first repo to have the file will return 1it.

When using the git backend branches and tags are translated into salt
environments.

Note: file:// repos will be treated as a remote, so refs you want used must
exist in that repo as *localx refs.

#gitfs_remotes:

- git://github.com/saltstack/salt-states.git

- file:///var/git/saltmaster

HoH P W FH W W W W

The gitfs_ssl_verify option specifies whether to ignore ssl certificate
errors when contacting the gitfs backend. You might want to set this to
false i1f you're using a git backend that uses a self-signed certificate but
keep in mind that setting this flag to anything other than the default of True
is a security concern, you may want to try using the ssh transport.
#gitfs_ssl_verify: True

#

The gitfs_root option gives the ability to serve files from a subdirectory

within the repository. The path is defined relative to the root of the

repository and defaults to the repository root.

#gitfs_root: somefolder/otherfolder

#

#

HitH## Pillar settings HitH##
AARBHABBHAAAABHBRRAAARSRRRBHRARAARRHRRAA AR

Salt Pillars allow for the building of global data that can be made selectively
available to different minions based on minion grain filtering. The Salt

Pillar is laid out in the same fashion as the file server, with environments,
a top file and sls files. However, pillar data does not need to be in the

highstate format, and is generally just key/value pairs.

#pillar_roots:

base:

- /srv/pillar

#

#ext_pillar:

- hiera: /etc/hiera.yaml

- cmd_yaml: cat /etc/salt/yaml

o FH W O R W R

The ext_pillar_first option allows for external pillar sources to populate

128 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

before file system pillar. This allows for targeting file system pillar from
ext_pillar.
#ext_pillar_first: False

The pillar_gitfs_ssl_verify option specifies whether to ignore ssl certificate
errors when contacting the pillar gitfs backend. You might want to set this to
false if you're using a git backend that uses a self-signed certificate but
keep in mind that setting this flag to anything other than the default of True
is a security concern, you may want to try using the ssh transport.
#pillar_gitfs_ssl_verify: True

TR B W R

The pillar_opts option adds the master configuration file data to a dict in
the pillar called "master'". This is used to set simple configurations in the
master config file that can then be used on minions.

#pillar_opts: False

The pillar_safe_render_error option prevents the master from passing pillar
render errors to the minion. This is set on by default because the error could
contain templating data which would give that minion information it shouldn't
have, like a password! When set true the error message will only show:

Rendering SLS 'my.sls' failed. Please see master log for details.
#pillar_safe_render_error: True

TR W W™ R

The pillar_source_merging_strategy option allows you to configure merging strategy
between different sources. It accepts five values: none, recurse, aggregate,l
—overwrite,

or smart. None will not do any merging at all. Recurse will merge recursivelyll
—mapping of data.

Aggregate instructs aggregation of elements between sources that use the #!yamlexN
—renderer. Overwrite

will overwrite elements according the order in which they are processed. This is

behavior of the 2014.1 branch and earlier. Smart guesses the best strategy based

on the '"renderer" setting and is the default value.
#pillar_source_merging_strategy: smart

Recursively merge lists by aggregating them instead of replacing them.
#pillar_merge_lists: False

Git External Pillar (git_pillar) Configuration Options

Specify the provider to be used for git_pillar. Must be either pygit2 or
gitpython. If unset, then both will be tried in that same order, and the
first one with a compatible version installed will be the provider that

is used.

#git_pillar_provider: pygit2

R W B K R

If the desired branch matches this value, and the environment is omitted

from the git_pillar configuration, then the environment for that git_pillar
remote will be base.

#git_pillar_base: master

If the branch is omitted from a git_pillar remote, then this branch will
be used instead
#git_pillar_branch: master

Environment to use for git_pillar remotes. This is normally derived from
the branch/tag (or from a per-remote env parameter), but if set this will
override the process of deriving the env from the branch/tag name.

2.3. Configuration file examples 129

Salt Documentation, Release 2016.3.4

#git_pillar_env: "'

Path relative to the root of the repository where the git_pillar top file
and SLS files are located.
#git_pillar_root: "'

Specifies whether or not to ignore SSL certificate errors when contacting
the remote repository.
#git_pillar_ssl_verify: False

When set to False, if there is an update/checkout lock for a git_pillar
remote and the pid written to it is not running on the master, the lock
file will be automatically cleared and a new lock will be obtained.
#git_pillar_global_lock: True

Git External Pillar Authentication Options

#

Along with git_pillar_password, is used to authenticate to HTTPS remotes.
#git_pillar_user: '’

Along with git_pillar_user, is used to authenticate to HTTPS remotes.
This parameter is not required if the repository does not use authentication.
#git_pillar_password: '’

By default, Salt will not authenticate to an HTTP (non-HTTPS) remote.
This parameter enables authentication over HTTP.
#git_pillar_insecure_auth: False

Along with git_pillar_privkey (and optionally git_pillar_passphrase),
i1s used to authenticate to SSH remotes.
#git_pillar_pubkey: ''

Along with git_pillar_pubkey (and optionally git_pillar_passphrase),
1s used to authenticate to SSH remotes.
#git_pillar_privkey: ''

This parameter 1is optional, required only when the SSH key being used
to authenticate is protected by a passphrase.
#git_pillar_passphrase: ''

A master can cache pillars locally to bypass the expense of having to render them
for each minion on every request. This feature should only be enabled in cases

where pillar rendering time is known to be unsatisfactory and any attendant security
concerns about storing pillars in a master cache have been addressed.

B

When enabling this feature, be certain to read through the additional '‘pillar_cache_
ox !

configuration options to fully understand the tunable parameters and theirR
—~implications.

#

Note: setting '‘pillar_cache: True' ' has no effect on targeting Minions with Pillars.
See https://docs.saltstack.com/en/latest/topics/targeting/pillar.html

#pillar_cache: False

If and only if a master has set '‘pillar_cache: True'', the cache TTL controls thell
—amount

of time, in seconds, before the cache is considered invalid by a master and a fresh
pillar is recompiled and stored.

130 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

#pillar_cache_ttl: 3600

If an only if a master has set ' ‘pillar_cache: True'', one of several storagell
—providers
can be utilized:

disk: The default storage backend. This caches rendered pillars to the master cache.
Rendered pillars are serialized and deserialized as ' ‘msgpack’’ structures for
speed. Note that pillars are stored UNENCRYPTED. Ensure that the master cache
has permissions set appropriately (sane defaults are provided).

memory: [EXPERIMENTAL] An optional backend for pillar caches which uses a pure-Python
in-memory data structure for maximal performance. There are several caveats,
however. First, because each master worker contains its own in-memory cache,
there is no guarantee of cache consistency between minion requests. This
works best in situations where the pillar rarely if ever changes. Secondly,
and perhaps more importantly, this means that unencrypted pillars will
be accessible to any process which can examine the memory of the " “salt-

—master !

This may represent a substantial security risk.

#

#pillar_cache_backend: disk

#
#
#
#
#
#
#
#
#
#
#
#
#
#

HitH## Syndic settings HittH##
HARGHBRBHARAABHRRRAAARGHBRBHRARAARRHRBAARAH

The Salt syndic is used to pass commands through a master from a higher
master. Using the syndic is simple. If this is a master that will have
syndic servers(s) below it, then set the "order_masters'" setting to True.

If this is a master that will be running a syndic daemon for passthrough, then
the "syndic_master" setting needs to be set to the location of the master server
to receive commands from.

HTOoFH W O K W R

Set the order_masters setting to True if this master will command lower
masters' syndic interfaces.
#order_masters: False

If this master will be running a salt syndic daemon, syndic_master tells
this master where to receive commands from.
#syndic_master: masterofmaster

This 1s the 'ret_port' of the MasterOfMaster:
#syndic_master_port: 4506

PID file of the syndic daemon:
#syndic_pidfile: /var/run/salt-syndic.pid

LOG file of the syndic daemon:
#syndic_log_file: syndic.log

The behaviour of the multi-syndic when connection to a master of masters failed.
Can specify '‘random'’ (default) or ‘‘ordered’'. If set to '‘random'', masters
will be iterated in random order. If ‘ordered’ " 1is specified, the configured

order will be used.

#syndic_failover: random

2.3. Configuration file examples 131

Salt Documentation, Release 2016.3.4

HitHH# Peer Publish settings it
HABHAAABAABHAGRRARRAABRARHAARRARRHARRRARRAHS

Salt minions can send commands to other minions, but only if the minion 1is
allowed to. By default "Peer Publication'" is disabled, and when enabled it
is enabled for specific minions and specific commands. This allows secure
compartmentalization of commands based on individual minions.

TR R

The configuration uses regular expressions to match minions and then a list
of regular expressions to match functions. The following will allow the

minion authenticated as foo.example.com to execute functions from the test
and pkg modules.

#peer:

foo.example.com:

- test.x*

- pkg.x*

#

This will allow all minions to execute all commands:

#peer:

#oooxe

- Lk

#

This i1s not recommended, since it would allow anyone who gets root on any
single minion to instantly have root on all of the minions!

Minions can also be allowed to execute runners from the salt master.

Since executing a runner from the minion could be considered a security risk,
it needs to be enabled. This setting functions just like the peer setting
except that it opens up runners instead of module functions.

All peer runner support is turned off by default and must be enabled before
using. This will enable all peer runners for all minions:

#peer_run:

#oooxe

- Lk

#

To enable just the manage.up runner for the minion foo.example.com:
#peer_run:

foo.example.com:

EIRE

- manage.up

#

#

HitHHH Mine settings HitH##

HERBRARARABAGRARARAGRARARRGRGRAR AR HIH
Restrict mine.get access from minions. By default any minion has a full access
to get all mine data from master cache. In acl definion below, only pcre matches
are allowed.
mine_get:
LK
- %

data only, minions webx to get all network.* and disk.* mine data and all other
minions won't get any mine data.
mine_get:
foo.example.com:
- network. interfaces
web. *x:

#
#
#
#
#
#
#
The example below enables minion foo.example.com to get 'network.interfaces' mine
#
#
#
#
#
#
- network. x

132 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

- disk.x*

#itH Logging settings it
AARBHBBBHAAAAARHBRRAAARGHBRBHAAAAARRHRBAARRH

The location of the master log file

The master log can be sent to a regular file, local path name, or network

location. Remote logging works best when configured to use rsyslogd(8) (e.g.:

““file:///dev/log’ "), with rsyslogd(8) configured for network logging. The URI
format is: <file|udp|tcp>://<host|socketpath>:<port-if-required>/<log-facility>
#log_file: /var/log/salt/master

#log_file: file:///dev/log

#log_file: udp://loghost:10514

#log_file: /var/log/salt/master
#key_logfile: /var/log/salt/key

The level of messages to send to the console.
One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.

#
#
#
The following log levels are considered INSECURE and may log sensitive data:
['garbage', 'trace', 'debug']

#

#

log_level: warning

The level of messages to send to the log file.

One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.

If using 'log_granular_levels' this must be set to the highest desired level.
#log_level_logfile: warning

The date and time format used in log messages. Allowed date/time formatting
can be seen here: http://docs.python.org/library/time.html#time.strftime
#log_datefmt: '%H:%M:%S"'

#log_datefmt_logfile: '%Y-%m-%d %H:%M:%S"'

The format of the console logging messages. Allowed formatting options can

be seen here: http://docs.python.org/library/logging.html#logrecord-attributes
#

Console log colors are specified by these additional formatters:

#

%(colorlevel)s

%(colorname)s

%(colorprocess)s

%(colormsg)s

#

Since it is desirable to include the surrounding brackets, '[' and ']', 1in

the coloring of the messages, these color formatters also include padding as
well. Color LogRecord attributes are only available for console logging.

#

#log_fmt_console: '%(colorlevel)s %(colormsg)s'

#log_fmt_console: '[%(levelname)-8s] %(message)s’

#

#log_fmt_logfile: '%(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s

—

This can be used to control logging levels more specificically. This
example sets the main salt library at the 'warning' level, but sets
'salt.modules' to log at the 'debug' level:

2.3. Configuration file examples 133

Salt Documentation, Release 2016.3.4

log_granular_levels:
"salt': 'warning'
'salt.modules': 'debug'
#
#

log_granular_levels: {}

HHHAH Node Groups HA#ARS
HARBHRRBHARAABRRRRAAAAR BB BHAAAAARRBRRAA RS

Node groups allow for logical groupings of minion nodes. A group consists of
a group name and a compound target. Nodgroups can reference other nodegroups
with 'N@' classifier. Ensure that you do not have circular references.

#

#nodegroups:

groupl: 'L@foo.domain.com,bar.domain.com,baz.domain.com or bl*.domain.com'
group2: 'GERos:Debian and foo.domain.com'

group3: 'G@os:Debian and N@groupl'

group4:

- 'G@foo:bar'

- 'or'

- 'G@foo:baz'

it Range Cluster settings #Hitt#H
HERHAHRARABABRARARABAGRARABABRARARRBRIRA R

The range server (and optional port) that serves your cluster information
https://github.com/ytoolshed/range/wiki/%22yamlfile%22-module-file-spec

#

#range_server: range:80

Windows Software Repo settings
HARAHHHHRAAAARHHBRRAAAARHHRRRAAAA AR RBHRAA A

Location of the repo on the master:

#winrepo_dir_ng: '/srv/salt/win/repo-ng'

#

List of git repositories to include with the local repo:
#winrepo_remotes_ng:

- 'https://github.com/saltstack/salt-winrepo-ng.git'

Windows Software Repo settings - Pre 2015.8
HABAARBAABHAA AR RARBRARBHAARRRBHARBRAHRARHRARBRAHRARBRAHS
Legacy repo settings for pre-2015.8 Windows minions.

#

Location of the repo on the master:

#winrepo_dir: '/srv/salt/win/repo’

#

Location of the master's repo cache file:
#winrepo_mastercachefile: '/srv/salt/win/repo/winrepo.p’
#

List of git repositories to include with the local repo:
#winrepo_remotes:

- 'https://github.com/saltstack/salt-winrepo.git'

witHH# Returner settings #itHn i
HABAARBAABRAARAABRARRRARBAABRARARARRRARBHAHRHA

134 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

Which returner(s) will be used for minion's result:
#return: mysql

it Miscellaneous settings #HtH#H#
AARBHRBHHARAAGHBRRHAAA AR RAAAAARRRRRAA AR

Default match type for filtering events tags: startswith, endswith, find, regex,N
—fnmatch

#event_match_type: startswith

Permanently include any available Python 3rd party modules into Salt Thin

when they are generated for Salt-SSH or other purposes.

The modules should be named by the names they are actually imported inside the Python.
The value of the parameters can be either one module or a comma separated list of them.
#thin_extra_mods: foo,bar

2.3.2 Example minion configuration file

Primary configuration settings
HERHABRABHBRBRARARABABRARABABRSRARRBRBR AR

This configuration file is used to manage the behavior of the Salt Minion.
With the exception of the location of the Salt Master Server, values that are
commented out but have an empty line after the comment are defaults that need
not be set in the config. If there is no blank line after the comment, the
value is presented as an example and is not the default.

HOH B W R

Per default the minion will automatically include all config files
from minion.d/*.conf (minion.d is a directory in the same directory
as the main minion config file).

#default_include: minion.d/*.conf

Set the location of the salt master server. If the master server cannot be
resolved, then the minion will fail to start.
#master: salt

Set http proxy information for the minion when doing requests
#proxy_host:

#proxy_port:

#proxy_username:

#proxy_password:

If multiple masters are specified in the 'master' setting, the default behavior

i1s to always try to connect to them in the order they are listed. If random_master is
set to True, the order will be randomized instead. This can be helpful in distributing
the load of many minions executing salt-call requests, for example, from a cron job.
If only one master is listed, this setting is ignored and a warning will be logged.

NOTE: If master_type is set to failover, use master_shuffle instead.
#random_master: False

Use 1f master_type is set to failover.
#master_shuffle: False

Minions can connect to multiple masters simultaneously (all masters
are "hot'"), or can be configured to failover if a master becomes
unavailable. Multiple hot masters are configured by setting this
value to "str'". Failover masters can be requested by setting

T OH W W

2.3. Configuration file examples 135

Salt Documentation, Release 2016.3.4

to "failover". MAKE SURE TO SET master_alive_1interval if you are

using failover.

master_type: str

Poll interval in seconds for checking if the master is still there. Only

respected if master_type above is '"failover". To disable the interval entirely,
set the value to -1. (This may be necessary on machines which have high numbers
of TCP connections, such as load balancers.)

master_alive_interval: 30

If the minion is in multi-master mode and the master_type configuration option
i1s set to '"failover'", this setting can be set to "True'" to force the minion

to fail back to the first master in the list if the first master is back online.
#master_failback: False

If the minion is in multi-master mode, the "master_type" configuration is set to
"failover", and the "master_failback" option is enabled, the master failback

interval can be set to ping the top master with this interval, in seconds.
#master_failback_interval: 0

Set whether the minion should connect to the master via IPvé6:
#1pv6: False

Set the number of seconds to wait before attempting to resolve

the master hostname if name resolution fails. Defaults to 30 seconds.
Set to zero if the minion should shutdown and not retry.

retry_dns: 30

TR B R

Set the port used by the master reply and authentication server.
#master_port: 4506

The user to run salt.
#user: root

The user to run salt remote execution commands as via sudo. If this option 1is
enabled then sudo will be used to change the active user executing the remote
command. If enabled the user will need to be allowed access via the sudoers
file for the user that the salt minion is configured to run as. The most
common option would be to use the root user. If this option is set the user
option should also be set to a non-root user. If migrating from a root minion
to a non root minion the minion cache should be cleared and the minion pki
directory will need to be changed to the ownership of the new user.
#sudo_user: root

IR OFH W O W W™ R

Specify the location of the daemon process ID file.
#pidfile: /var/run/salt-minion.pid

The root directory prepended to these options: pki_dir, cachedir, log_file,
sock_dir, pidfile.
#root_dir: /

The path to the minion's configuration file.
#conf_file: /etc/salt/minion

The directory to store the pki information in
#pki_dir: /Jetc/salt/pki/minion

Explicitly declare the id for this minion to use, if left commented the id

136 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

will be the hostname as returned by the python call: socket.getfqdn()

Since salt uses detached ids it is possible to run multiple minions on the
same machine but with different ids, this can be useful for salt compute

clusters.

#1id:

Cache the minion id to a file when the minion's id is not statically defined
in the minion config. Defaults to "True". This setting prevents potential
problems when automatic minion id resolution changes, which can cause the
minion to lose connection with the master. To turn off minion id caching,
set this config to " ‘False'’

#minion_1id_caching: True

o W B R

Append a domain to a hostname in the event that it does not exist. This 1is
useful for systems where socket.getfqdn() does not actually result in a

FQDN (for instance, Solaris).

#append_domain:

Custom static grains for this minion can be specified here and used in SLS
files just like all other grains. This example sets 4 custom grains, with
the 'roles' grain having two values that can be matched against.

#grains:

roles:

- webserver

- memcache

deployment: datacenter4
cabinet: 13

cab_u: 14-15

#

#

#

Where cache data goes.
This data may contain sensitive data and should be protected accordingly.
#cachedir: /var/cache/salt/minion

Append minion_1id to these directories. Helps with

multiple proxies and minions running on the same machine.

Allowed elements in the list: pki_dir, cachedir, extension_modules

Normally not needed unless running several proxies and/or minions on the same machine
Defaults to ['cachedir'] for proxies, [] (empty list) for regular minions
#append_minionid_config_dirs:

Verify and set permissions on configuration directories at startup.
#verify_env: True

The minion can locally cache the return data from jobs sent to it, this

can be a good way to keep track of jobs the minion has executed

(on the minion side). By default this feature is disabled, to enable, set
cache_jobs to True.

#cache_jobs: False

Set the directory used to hold unix sockets.
#sock_dir: /var/run/salt/minion

Set the default outputter used by the salt-call command. The default 1is

"nested".

#output: nested

#

By default output is colored. To disable colored output, set the color value
to False.

2.3. Configuration file examples 137

Salt Documentation, Release 2016.3.4

#color: True

Do not strip off the colored output from nested results and state outputs
(true by default).

strip_colors: False

Backup files that are replaced by file.managed and file.recurse under

'cachedir'/file_backups relative to their original location and appended
with a timestamp. The only valid setting is "minion". Disabled by default.
#

Alternatively this can be specified for each file in state files:

Jetc/ssh/sshd_config:

file.managed:

- source: salt://ssh/sshd_config

- backup: minion

#

#backup_mode: minion

When waiting for a master to accept the minion's public key, salt will

continuously attempt to reconnect until successful. This is the time, 1in
seconds, between those reconnection attempts.

#acceptance_wait_time: 10

If this is nonzero, the time between reconnection attempts will increase by
acceptance_wait_time seconds per iteration, up to this maximum. If this 1is
set to zero, the time between reconnection attempts will stay constant.
#acceptance_wait_time_max: 0

If the master rejects the minion's public key, retry instead of exiting.
Rejected keys will be handled the same as waiting on acceptance.
#rejected_retry: False

When the master key changes, the minion will try to re-auth itself to receive

the new master key. In larger environments this can cause a SYN flood on the

master because all minions try to re-auth immediately. To prevent this and

have a minion wait for a random amount of time, use this optional parameter.

The wait-time will be a random number of seconds between 0 and the defined value.
#random_reauth_delay: 60

When waiting for a master to accept the minion's public key, salt will
continuously attempt to reconnect until successful. This is the timeout value,

in seconds, for each individual attempt. After this timeout expires, the minion
will wait for acceptance_wait_time seconds before trying again. Unless your master
is under unusually heavy load, this should be left at the default.

#auth_timeout: 60

R W B R

Number of consecutive SaltReqTimeoutError that are acceptable when trying to
authenticate.
#auth_tries: 7

The number of attempts to connect to a master before giving up.

Set this to -1 for unlimited attempts. This allows for a master to have
downtime and the minion to reconnect to it later when it comes back up.
In 'failover' mode, it is the number of attempts for each set of masters.
In this mode, it will cycle through the list of masters for each attempt.

This is different than auth_tries because auth_tries attempts to
retry auth attempts with a single master. auth_tries 1is under the

o W R R W™ B R

138 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

assumption that you can connect to the master but not gain
authorization from it. master_tries will still cycle through all
the masters in a given try, so it is appropriate if you expect
occasional downtime from the master(s).

#master_tries: 1

H O W W

If authentication fails due to SaltReqTimeoutError during a ping_interval,
cause sub minion process to restart.
#auth_safemode: False

Ping Master to ensure connection is alive (minutes).
#ping_1interval: O

To auto recover minions i1f master changes IP address (DDNS)
auth_tries: 10

auth_safemode: False

ping_interval: 90
#
#
#
#

Minions won't know master is missing until a ping fails. After the ping fail,
the minion will attempt authentication and likely fails out and cause a restart.
When the minion restarts it will resolve the masters IP and attempt to reconnect.

If you don't have any problems with syn-floods, don't bother with the
three recon_x* settings described below, just leave the defaults!

The ZeroMQ pull-socket that binds to the masters publishing interface tries

to reconnect immediately, if the socket is disconnected (for example if

the master processes are restarted). In large setups this will have all

minions reconnect immediately which might flood the master (the ZeroMQ-default

is usually a 100ms delay). To prevent this, these three recon_x settings

can be used.

recon_default: the interval in milliseconds that the socket should wait before
trying to reconnect to the master (1600ms = 1 second)

recon_max: the maximum time a socket should wait. each interval the time to wait
is calculated by doubling the previous time. if recon_max is reached,
it starts again at recon_default. Short example:

reconnect 1: the socket will wait 'recon_default' milliseconds
reconnect 2: 'recon_default' * 2

reconnect 3: ('recon_default' *x 2) x 2

reconnect 4: value from previous interval * 2

reconnect 5: value from previous interval * 2

reconnect x: if value >= recon_max, it starts again with recon_default

recon_randomize: generate a random wait time on minion start. The wait time will
be a random value between recon_default and recon_default +

and recon_max value kind of defeats the purpose of being able to
setup is quite large (several thousand minions), they will still
all minions try to reconnect.

60 second timeframe on a disconnect.

recon_default: 1000
recon_max: 59000

o o OH OH I OH OH O OH OH OH OH R OH O R W W R OH W R W OH R W W R W W W oW W W W

recon_max. Having all minions reconnect with the same recon_default
change these settings. If all minions have the same values and your

flood the master. The desired behavior is to have timeframe within

Example on how to use these settings. The goal: have all minions reconnect within a

2.3. Configuration file examples

139

Salt Documentation, Release 2016.3.4

recon_randomize: True

#

#

Each minion will have a randomized reconnect value between 'recon_default'
and 'recon_default + recon_max', which in this example means between 1000ms
60000ms (or between 1 and 60 seconds). The generated random-value will be
doubled after each attempt to reconnect. Lets say the generated random

value is 11 seconds (or 11000ms).

reconnect 1: wait 11 seconds

reconnect wait 22 seconds

reconnect wait 33 seconds

reconnect wait 44 seconds

reconnect wait 55 seconds

reconnect wait time is bigger than 60 seconds (recon_default + recon_max)
reconnect wait 11 seconds

reconnect wait 22 seconds

reconnect wait 33 seconds

reconnect etc.

#
#
#
#
#
#
#
#
#
#
#
#
#

X ©WOoNOOANWN

In a setup with ~6000 thousand hosts these settings would average the reconnects
to about 100 per second and all hosts would be reconnected within 60 seconds.
recon_default: 100

recon_max: 5000

recon_randomize: False

The loop_interval sets how long in seconds the minion will wait between
evaluating the scheduler and running cleanup tasks. This defaults to a
sane 60 seconds, but if the minion scheduler needs to be evaluated more
often lower this value

loop_1interval: 60

The grains can be merged, instead of overridden, using this option.

This allows custom grains to defined different subvalues of a dictionary

grain. By default this feature is disabled, to enable set grains_deep_merge
to "True'’

#grains_deep_merge: False

The grains_refresh_every setting allows for a minion to periodically check
its grains to see if they have changed and, if so, to inform the master

of the new grains. This operation is moderately expensive, therefore

care should be taken not to set this value too low.

Note: This value is expressed in __minutes__!

A value of 10 minutes is a reasonable default.

o OF OH K W R K W™ R

If the value is set to zero, this check is disabled.
#grains_refresh_every: 1

Cache grains on the minion. Default is False.
#grains_cache: False

Cache rendered pillar data on the minion. Default is False.

This may cause 'cachedir'/pillar to contain sensitive data that should be
protected accordingly.

#minion_pillar_cache: False

Grains cache expiration, in seconds. If the cache file is older than this

140 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

number of seconds then the grains cache will be dumped and fully re-populated
with fresh data. Defaults to 5 minutes. Will have no effect if 'grains_cache'
1s not enabled.

grains_cache_expiration: 300

Determines whether or not the salt minion should run scheduled mine updates.
Defaults to "True'". Set to "False" to disable the scheduled mine updates

(this essentially just does not add the mine update function to the minion's
scheduler).

#mine_enabled: True

Determines whether or not scheduled mine updates should be accompanied by a job
return for the job cache. Defaults to "False". Set to "True" to include job

returns in the job cache for mine updates.

#mine_return_job: False

Example functions that can be run via the mine facility
NO mine functions are established by default.

Note these can be defined in the minion's pillar as well.
#mine_functions:

test.ping: []

network.ip_addrs:

interface: etho

cidr: '10.0.0.0/8'

Windows platforms lack posix IPC and must rely on slower TCP based inter-
process communications. Set ipc_mode to 'tcp' on such systems
#ipc_mode: 1ipc

Overwrite the default tcp ports used by the minion when in tcp mode
#tcp_pub_port: 4510
#tcp_pull_port: 4511

Passing very large events can cause the minion to consume large amounts of
memory. This value tunes the maximum size of a message allowed onto the

minion event bus. The value is expressed in bytes.

#max_event_size: 1048576

To detect failed master(s) and fire events on connect/disconnect, set
master_alive_1interval to the number of seconds to poll the masters for
connection events.

#

#master_alive_interval: 30

The minion can include configuration from other files. To enable this,

pass a list of paths to this option. The paths can be either relative or
absolute; 1if relative, they are considered to be relative to the directory
the main minion configuration file lives in (this file). Paths can make use
of shell-style globbing. If no files are matched by a path passed to this
option then the minion will log a warning message.

Include a config file from some other path:
include: /etc/salt/extra_config

o W OH R W O R W™ W R

Include config from several files and directories:
#include:

- Jetc/salt/extra_config

- Jetc/roles/webserver

2.3. Configuration file examples 141

Salt Documentation, Release 2016.3.4

The syndic minion can verify that it is talking to the correct master via the
key fingerprint of the higher-level master with the "syndic_finger" config.
#syndic_finger: "'

#

#

#

HHHAH Minion module management HH#H#H#
HARBHRRBHARAABRRRRAAAAR BB BHAAAAARRBRRAA RS

Disable specific modules. This allows the admin to limit the level of

access the master has to the minion.

#disable_modules: [cmd,test]

#disable_returners: []

This i1s the reverse of disable_modules. The default, like disable_modules, i1s thel
—empty list,

but if this option is set to *anything* then xonly* those modules will load.

Note that this is a very large hammer and it can be quite difficult to keep thel
—minion working

the way you think it should since Salt uses many modules internally itself. At all
—bare minimum

you need the following enabled or else the minion won't start.

#whitelist_modules:

- cmdmod

- test

- config

Modules can be loaded from arbitrary paths. This enables the easy deployment
of third party modules. Modules for returners and minions can be loaded.
Specify a list of extra directories to search for minion modules and
returners. These paths must be fully qualified!

#module_dirs: []

#returner_dirs: []

#states_dirs: []

#render_dirs: []

#utils_dirs: []

#

A module provider can be statically overwritten or extended for the minion
via the providers option, in this case the default module will be

overwritten by the specified module. In this example the pkg module will

be provided by the yumpkg5 module instead of the system default.

T OH W W

#providers:
pkg: yumpkg5h
#

Enable Cython modules searching and loading. (Default: False)

#cython_enable: False

#

Specify a max size (in bytes) for modules on import. This feature is currently
only supported on *nix operating systems and requires psutil.

modules_max_memory: -1

wHit##H# State Management Settings #it###
HHBHARBBABRARBRARBRARBAABBABHBHRBRARBRABHAREH

The state management system executes all of the state templates on the minion
to enable more granular control of system state management. The type of

template and serialization used for state management needs to be configured

on the minion, the default renderer is yaml_jinja. This is a yaml file

142 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

rendered from a jinja template, the available options are:
yaml_jinja

yaml_mako

yaml_wempy

json_jinja

json_mako

json_wempy

renderer: yaml_jinja

o B W O OH W W R R

The failhard option tells the minions to stop immediately after the first
failure detected in the state execution. Defaults to False.

#failhard: False

#

Reload the modules prior to a highstate run.

#autoload_dynamic_modules: True

#

clean_dynamic_modules keeps the dynamic modules on the minion in sync with
the dynamic modules on the master, this means that if a dynamic module 1is
not on the master it will be deleted from the minion. By default, this is
enabled and can be disabled by changing this value to False.
#clean_dynamic_modules: True
#
#
#
#
#

Normally, the minion is not isolated to any single environment on the master
when running states, but the environment can be isolated on the minion side
by statically setting it. Remember that the recommended way to manage
environments is to isolate via the top file.

#environment: None

#

Isolates the pillar environment on the minion side. This functions the same

as the environment setting, but for pillar instead of states.

#pillarenv: None

#

If using the local file directory, then the state top file name needs to be

defined, by default this is top.sls.

#state_top: top.sls

#

Run states when the minion daemon starts. To enable, set startup_states to:
'highstate' -- Execute state.highstate

'sls' -- Read in the sls_list option and execute the named sls files

'top' -- Read top_file option and execute based on that file on the Master
#startup_states: '’

#

List of states to run when the minion starts up if startup_states is 'sls':
#sls_list:

- edit.vim

- hyper

#

Top file to execute if startup_states is 'top':

#top_file: "'

Automatically aggregate all states that have support for mod_aggregate by
setting to True. Or pass a list of state module names to automatically
aggregate just those types.

state_aggregate:

#
#
#
#
#
- pkg
#

2.3. Configuration file examples 143

Salt Documentation, Release 2016.3.4

#state_aggregate: False

HiHHH File Directory Settings HitHH
HAHBHABBARBBABRARHRAABRAHBRABRAHBRR B R RS RA

The Salt Minion can redirect all file server operations to a local directory,
this allows for the same state tree that is on the master to be used if

copied completely onto the minion. This is a literal copy of the settings on
the master but used to reference a local directory on the minion.

Set the file client. The client defaults to looking on the master server for
files, but can be directed to look at the local file directory setting
defined below by setting it to "local"”. Setting a local file_client runs the
minion in masterless mode.

file_client: remote

o W B R

The file directory works on environments passed to the minion, each environment
can have multiple root directories, the subdirectories in the multiple file
roots cannot match, otherwise the downloaded files will not be able to be
reliably ensured. A base environment is required to house the top file.
Example:
file_roots:
base:
- /srv/salt/
dev:
- /srv/salt/dev/services
- /srv/salt/dev/states
prod:
- /srv/salt/prod/services
- /srv/salt/prod/states

file_roots:
base:
- /srv/salt

HoFH P O OFH W OH R W W R W W OH W W B R

Uncomment the line below if you do not want the file_server to follow
symlinks when walking the filesystem tree. This is set to True

by default. Currently this only applies to the default roots
fileserver_backend.

fileserver_followsymlinks: False

#
#
#
#
#
#
Uncomment the line below i1f you do not want symlinks to be

treated as the files they are pointing to. By default this is set to

False. By uncommenting the line below, any detected symlink while listing
files on the Master will not be returned to the Minion.
#fileserver_ignoresymlinks: True

#

#

#

#

#

#

#

#

By default, the Salt fileserver recurses fully into all defined environments

to attempt to find files. To limit this behavior so that the fileserver only
traverses directories with SLS files and special Salt directories like _modules,
enable the option below. This might be useful for installations where a file root
has a very large number of files and performance is negatively impacted. Default
is False.

fileserver_limit_traversal: False

The hash_type is the hash to use when discovering the hash of a file 1in

the local fileserver. The default is sha256, sha224, sha384 and sha512 are alsol
—supported.

#

144 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

WARNING: While md5 and shal are also supported, do not use it due to the high chance
of possible collisions and thus security breach.

Warning: Prior to changing this value, the minion should be stopped and all
Salt caches should be cleared.
#hash_type: sha256

#
#
#
#
#

The Salt pillar is searched for locally if file_client is set to local. If
this is the case, and pillar data is defined, then the pillar_roots need to
also be configured on the minion:

#pillar_roots:

base:

- /srv/pillar

Set a hard-limit on the size of the files that can be pushed to the master.
It will be interpreted as megabytes. Default: 100

#file_recv_max_size: 100

#

#

HAHHRHS Security settings #H###H#
AARRHHHBHAAAARHHBRRAAAARRHBRRAAA AR RBHRAA A

Enable "open mode", this mode still maintains encryption, but turns off

authentication, this is only intended for highly secure environments or for
the situation where your keys end up in a bad state. If you run in open mode
you do so at your own risk!

#open_mode: False

Enable permissive access to the salt keys. This allows you to run the

master or minion as root, but have a non-root group be given access to

your pki_dir. To make the access explicit, root must belong to the group
you've given access to. This is potentially quite insecure.
#permissive_pki_access: False

The state_verbose and state_output settings can be used to change the way

state system data is printed to the display. By default all data is printed.
The state_verbose setting can be set to True or False, when set to False

all data that has a result of True and no changes will be suppressed.
#state_verbose: True

The state_output setting changes if the output is the full multi line
output for each changed state if set to 'full', but if set to 'terse'
the output will be shortened to a single line.

#state_output: full

The state_output_diff setting changes whether or not the output from

successful states is returned. Useful when even the terse output of these
states is cluttering the logs. Set it to True to ignore them.
#state_output_diff: False

The state_output_profile setting changes whether profile information
will be shown for each state run.
#state_output_profile: True

Fingerprint of the master public key to validate the identity of your Salt master
before the initial key exchange. The master fingerprint can be found by running

"salt-key -F master" on the Salt master.

#master_finger: ''

2.3. Configuration file examples 145

Salt Documentation, Release 2016.3.4

HA#ARS Thread settings #HE#HAH#
AARRHHBHHAAAARHBRRRAAAA ARG RAAA AR RRHRAA A

Disable multiprocessing support, by default when a minion receives a

publication a new process is spawned and the command is executed therein.
#multiprocessing: True

HitH#H Logging settings #Hit##H
HARABHARBRARABRBRARARARRARARARAGRARARRBHIH

The location of the minion log file

The minion log can be sent to a regular file, local path name, or network

location. Remote logging works best when configured to use rsyslogd(8) (e.g.:
"“file:///dev/log' "), with rsyslogd(8) configured for network logging. The URI
format is: <file|udp|tcp>://<host|socketpath>:<port-if-required>/<log-facility>
#log_file: /var/log/salt/minion

#log_file: file:///dev/log

#log_file: udp://loghost:10514

#

#log_file: /var/log/salt/minion

#key_logfile: /var/log/salt/key

The level of messages to send to the console.
One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.

The following log levels are considered INSECURE and may log sensitive data:
['garbage', 'trace', 'debug']

#
#
#
#
#
#
Default: 'warning'

#log_level: warning

The level of messages to send to the log file.

One of 'garbage', 'trace', 'debug', info', 'warning', 'error', 'critical'.

If using 'log_granular_levels' this must be set to the highest desired level.
Default: 'warning'

#log_level_logfile:

The date and time format used in log messages. Allowed date/time formatting
can be seen here: http://docs.python.org/library/time.html#time.strftime
#log_datefmt: '%H:%M:%S"'

#log_datefmt_logfile: '%Y-%m-%d %H:%M:%S"'

The format of the console logging messages. Allowed formatting options can

be seen here: http://docs.python.org/library/logging.html#logrecord-attributes
#

Console log colors are specified by these additional formatters:

#

%(colorlevel)s

%(colorname)s

%(colorprocess)s

%(colormsg)s

#

Since it is desirable to include the surrounding brackets, '[' and ']', 1in

the coloring of the messages, these color formatters also include padding as
well. Color LogRecord attributes are only available for console logging.

#

#log_fmt_console: '%(colorlevel)s %(colormsg)s'

#log_fmt_console: '[%(levelname)-8s] %(message)s'

146 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

#
#log_fmt_logfile: '%(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s

!
—r

This can be used to control logging levels more specificically. This
example sets the main salt library at the 'warning' level, but sets

'salt.modules' to log at the 'debug' level:

log_granular_levels:

'salt': 'warning'

"salt.modules': 'debug'
#
#

log_granular_levels: {}

To diagnose issues with minions disconnecting or missing returns, ZeroMQ
supports the use of monitor sockets to log connection events. This
feature requires ZeroMQ 4.0 or higher.

To enable ZeroMQ monitor sockets, set 'zmg_monitor' to 'True' and log at a
debug level or higher.

A sample log event is as follows:

[DEBUG] ZeroMQ event: {'endpoint': 'tcp://127.0.0.1:4505', 'event': 512,
'value': 27, 'description': 'EVENT_DISCONNECTED'}

All events logged will include the string 'ZeroMQ event'. A connection event
should be logged as the minion starts up and initially connects to the
master. If not, check for debug log level and that the necessary version of
ZeroMQ is installed.

TR P O OH W I OH W W OH OH W™ OH K W™ R

#zmg_monitor: False

Hitt##H Module configuration it
HERBAARARAHARRARARABAGBRARARRBRBRARARRBRGRAH

Salt allows for modules to be passed arbitrary configuration data, any data
passed here in valid yaml format will be passed on to the salt minion modules
for use. It is STRONGLY recommended that a naming convention be used in which
the module name is followed by a . and then the value. Also, all top level
data must be applied via the yaml dict construct, some examples:

You can specify that all modules should run in test mode:
test: True

o FH W O R W R

A simple value for the test module:

#test.foo: foo

#

A list for the test module:

#test.bar: [baz,quo]

#

A dict for the test module:

#test.baz: {spam: sausage, cheese: bread}

#

#

witHH#HH Update settings HitH##H
AARRHBRBHAAAARRHRBHARAAAR R RBAAAARRHBRBAAAA

Using the features in Esky, a salt minion can both run as a frozen app and
be updated on the fly. These options control how the update process
(saltutil.update()) behaves.

2.3. Configuration file examples 147

Salt Documentation, Release 2016.3.4

#

The url for finding and downloading updates. Disabled by default.
#update_url: False

#

The list of services to restart after a successful update. Empty by default.
#update_restart_services: []

HitH##H Keepalive settings it
HARABHBRBRARABRBRARARARARAARARABHGRBRARRBHRIH

ZeroMQ now includes support for configuring SO_KEEPALIVE if supported by
the 0S. If connections between the minion and the master pass through

a state tracking device such as a firewall or VPN gateway, there 1is

the risk that it could tear down the connection the master and minion
without informing either party that their connection has been taken away.
Enabling TCP Keepalives prevents this from happening.

O H W R

Overall state of TCP Keepalives, enable (1 or True), disable (0 or False)
or leave to the 0S defaults (-1), on Linux, typically disabled. Default True, enabled.
#tcp_keepalive: True

How long before the first keepalive should be sent in seconds. Default 300

to send the first keepalive after 5 minutes, 0S default (-1) is typically 7200 seconds
on Linux see /proc/sys/net/ipv4/tcp_keepalive_time.

#tcp_keepalive_idle: 300

How many lost probes are needed to consider the connection lost. Default -1
to use 0S defaults, typically 9 on Linux, see /proc/sys/net/ipv4/tcp_keepalive_probes.
#tcp_keepalive_cnt: -1

How often, in seconds, to send keepalives after the first one. Default -1 to
use 0S defaults, typically 75 seconds on Linux, see

/proc/sys/net/ipv4/tcp_keepalive_intvl.

#tcp_keepalive_intvl: -1

HitH Windows Software settings #itH###
HABAARBAABRAGRAABRARHRABRAARRARRAARRARRHRAR R

Location of the repository cache file on the master:
#win_repo_cachefile: 'salt://win/repo/winrepo.p’

HHHBHHE Returner settings H#HHH#H
AARRHARBHAAARGHRRRHAAA AR RRAAARAHRRRRAAAARRH

Which returner(s) will be used for minion's result:
#return: mysql

HitH Miscellaneous settings #it####
HABHAABBAABRAGRAABRARRRABRAARRABRAARRASRHRARRH

Default match type for filtering events tags: startswith, endswith, find, regex,N
—fnmatch

#event_match_type: startswith

148 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

2.4 Minion Blackout Configuration

New in version 2016.3.0.

Salt supports minion blackouts. When a minion is in blackout mode, all remote execution commands are disabled.
This allows production minions to be put ~“on hold", eliminating the risk of an untimely configuration change.

Minion blackouts are configured via a special pillar key, minion_blackout. If this key is set to True, then the
minion will reject all incoming commands, except for saltutil.refresh_pillar. (The exception is important,
so minions can be brought out of blackout mode)

Salt also supports an explicit whitelist of additional functions that will be allowed during blackout. This is configured
with the special pillar key minion_blackout_whitelist, which is formed as a list:

2.5 Access Control System

New in version 0.10.4.

Salt maintains a standard system used to open granular control to non administrative users to execute Salt commands.
The access control system has been applied to all systems used to configure access to non administrative control
interfaces in Salt.

These interfaces include, the peer system, the external auth system and the publisher acl system.

The access control system mandated a standard configuration syntax used in all of the three aforementioned systems.
While this adds functionality to the configuration in 0.10.4, it does not negate the old configuration.

Now specific functions can be opened up to specific minions from specific users in the case of external auth and
publisher ACLs, and for specific minions in the case of the peer system.

2.5.1 Publisher ACL system

The salt publisher ACL system is a means to allow system users other than root to have access to execute select salt
commands on minions from the master.

The publisher ACL system is configured in the master configuration file via the publisher_acl configuration
option. Under the publisher_acl configuration option the users open to send commands are specified and then
a list of regular expressions which specify the minion functions which will be made available to specified user. This
configuration is much like the peer configuration:

publisher_acl:
Allow thatch to execute anything.
thatch:
-
Allow fred to use test and pkg, but only on "web*" minions.
fred:
- webx:
- test.x
- pkg.*

WARNING: client_acl and client_acl_blacklist options are deprecated and will be removed in the future releases. Use
publisher_acl and publisher_acl_blacklist instead.

2.4. Minion Blackout Configuration 149

Salt Documentation, Release 2016.3.4

Permission Issues

Directories required for publisher_acl must be modified to be readable by the users specified:

chmod 755 /var/cache/salt /var/cache/salt/master /var/cache/salt/master/jobs /var/run/
—salt /var/run/salt/master

Note: In addition to the changes above you will also need to modify the permissions of /var/log/salt and the existing
log file to be writable by the user(s) which will be running the commands. If you do not wish to do this then you
must disable logging or Salt will generate errors as it cannot write to the logs as the system users.

If you are upgrading from earlier versions of salt you must also remove any existing user keys and re-start the Salt
master:

rm /var/cache/salt/.xkey
service salt-master restart

Whitelist and Blacklist

Salt's authentication systems can be configured by specifying what is allowed using a whitelist, or by specifying
what is disallowed using a blacklist. If you specify a whitelist, only specified operations are allowed. If you specify
a blacklist, all operations are allowed except those that are blacklisted.

See publisher_acl and publisher_acl_blacklist.

2.5.2 External Authentication System

Salt's External Authentication System (eAuth) allows for Salt to pass through command authorization to any external
authentication system, such as PAM or LDAP.

Note: eAuth using the PAM external auth system requires salt-master to be run as root as this system needs root
access to check authentication.

External Authentication System Configuration

The external authentication system allows for specific users to be granted access to execute specific functions on
specific minions. Access is configured in the master configuration file and uses the access control system:

external_auth:
pam:
thatch:
- 'webx':
- test.x*
- network. x

steve:
- .*

The above configuration allows the user thatch to execute functions in the test and network modules on the
minions that match the web” target. User steve is given unrestricted access to minion commands.

Salt respects the current PAM configuration in place, and uses the ‘login' service to authenticate.

150 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

Note: The PAM module does not allow authenticating as root.

Note: state.sls and state.highstate will return " "Failed to authenticate!" if the request timeout is reached. Use -t flag

to increase the timeout

To allow access to wheel modules or runner modules the following @ syntax must be used:

external_auth:

pam:
thatch:
- '@wheel' # to allow access to all wheel modules
- '@runner' # to allow access to all runner modules
- '@jobs' # to allow access to the jobs runner and/or wheel module

Note: The runner/wheel markup is different, since there are no minions to scope the acl to.

Note: Globs will not match wheel or runners! They must be explicitly allowed with @wheel or @runner.

aware that this could inadvertently expose some data such as minion IDs.

Warning: All users that have external authentication privileges are allowed to run saltutil. findjob. Be

Matching syntax

The structure of the external_auth dictionary can take the following shapes. Function matches are regular

expressions; minion matches are compound targets.

By user:

external_auth:
<eauth backend>:
<user or group%>:
- <regex to match function>

By user, by minion:

external_auth:
<eauth backend>:
<user or group%>:
<minion compound target>:
- <regex to match function>

Groups

To apply permissions to a group of users in an external authentication system, append a % to the ID:

2.5. Access Control System

151

Salt Documentation, Release 2016.3.4

external_auth:
pam:
admins%:
— T :

— lpkg.*l

Limiting by function arguments

Positional arguments or keyword arguments to functions can also be whitelisted.

New in version 2016.3.0.

external_auth:

pam:
my_user:
—_ l*l:
- 'my_mod.x*"':
args:
—_ la.*l
— Ib.*|
kwargs:
"kwa': 'kwa.x'
"kwb': 'kwb'
The rules:

1. The arguments values are matched as regexp.
2. If arguments restrictions are specified the only matched are allowed.
3. If an argument isn't specified any value is allowed.

4. To skip an arg use "“everything" regexp .*. Le. if arg0 and arg?2 should be limited but argl and other
arguments could have any value use:

args:
- 'value0o'
.

- 'value2'

Usage

The external authentication system can then be used from the command-line by any user on the same system as the
master with the —a option:

$ salt -a pam web* test.ping

The system will ask the user for the credentials required by the authentication system and then publish the command.

Tokens

With external authentication alone, the authentication credentials will be required with every call to Salt. This can
be alleviated with Salt tokens.

Tokens are short term authorizations and can be easily created by just adding a —T option when authenticating:

152 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

$ salt -T -a pam web* test.ping

Now a token will be created that has an expiration of 12 hours (by default). This token is stored in a file named
salt_token in the active user's home directory.

Once the token is created, it is sent with all subsequent communications. User authentication does not need to be
entered again until the token expires.

Token expiration time can be set in the Salt master config file.

LDAP and Active Directory

Note: LDAP usage requires that you have installed python-ldap.

Salt supports both user and group authentication for LDAP (and Active Directory accessed via its LDAP interface)

OpenLDAP and similar systems

LDAP configuration happens in the Salt master configuration file.

Server configuration values and their defaults:

Server to auth against
auth.ldap.server: localhost

Port to connect via
auth.ldap.port: 389

Use TLS when connecting
auth.ldap.tls: False

LDAP scope level, almost always 2
auth.ldap.scope: 2

Server specified in URI format
auth.ldap.uri: "' # Overrides .ldap.server, .ldap.port, .ldap.tls above

Verify server's TLS certificate
auth.ldap.no_verify: False

Bind to LDAP anonymously to determine group membership
Active Directory does not allow anonymous binds without special configuration
auth.ldap.anonymous: False

FOR TESTING ONLY, this is a VERY insecure setting.

If this is True, the LDAP bind password will be ignored and
access will be determined by group membership alone with

the group memberships being retrieved via anonymous bind
auth.ldap.auth_by_group_membership_only: False

Require authenticating user to be part of this Organizational Unit
This can be blank if your LDAP schema does not use this kind of OU
auth.ldap.groupou: 'Groups'

2.5. Access Control System 153

Salt Documentation, Release 2016.3.4

Object Class for groups. An LDAP search will be done to find all groups of this
class to which the authenticating user belongs.
auth.ldap.groupclass: 'posixGroup'

Unique ID attribute name for the user
auth.ldap.accountattributename: 'memberU-id'

These are only for Active Directory
auth.ldap.activedirectory: False
auth.ldap.persontype: 'person'

auth.ldap.minion_stripdomains: []

There are two phases to LDAP authentication. First, Salt authenticates to search for a users' Distinguished Name
and group membership. The user it authenticates as in this phase is often a special LDAP system user with read-only
access to the LDAP directory. After Salt searches the directory to determine the actual user's DN and groups, it
re-authenticates as the user running the Salt commands.

If you are already aware of the structure of your DNs and permissions in your LDAP store are set such that users
can look up their own group memberships, then the first and second users can be the same. To tell Salt this is the
case, omit the auth. ldap.bindpw parameter. You can template the binddn like this:

auth.ldap.basedn: dc=saltstack,dc=com
auth.ldap.binddn: uid={{ username }},cn=users,cn=accounts,dc=saltstack,dc=com

Salt will use the password entered on the salt command line in place of the bindpw.

To use two separate users, specify the LDAP lookup user in the binddn directive, and include a bindpw like so

auth.ldap.binddn: uid=ldaplookup,cn=sysaccounts,cn=etc,dc=saltstack,dc=com
auth.ldap.bindpw: mypassword

As mentioned before, Salt uses a filter to find the DN associated with a user. Salt substitutes the {{ username }}
value for the username when querying LDAP

auth.ldap.filter: uid={{ username }}

For OpenLDAP, to determine group membership, one can specify an OU that contains group data. This is prepended
to the basedn to create a search path. Then the results are filtered against auth. ldap.groupclass, default
posixGroup, and the account's ‘name' attribute, nemberUid by default.

’ auth.ldap.groupou: Groups

When using the ldap('DC=domain,DC=com’) eauth operator, sometimes the records returned from LDAP or Active
Directory have fully-qualified domain names attached, while minion IDs instead are simple hostnames. The param-
eter below allows the administrator to strip off a certain set of domain names so the hostnames looked up in the
directory service can match the minion IDs.

auth.ldap.minion_stripdomains: ['.external.bigcorp.com', '.internal.bigcorp.com']

Active Directory

Active Directory handles group membership differently, and does not utilize the groupou configuration variable.
AD needs the following options in the master config:

154 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

auth.ldap.activedirectory: True
auth.ldap.filter: sAMAccountName={{username}}
auth.ldap.accountattributename: sAMAccountName
auth.ldap.groupclass: group
auth.ldap.persontype: person

To determine group membership in AD, the username and password that is entered when LDAP is requested as the
eAuth mechanism on the command line is used to bind to AD's LDAP interface. If this fails, then it doesn't matter
what groups the user belongs to, he or she is denied access. Next, the distinguishedName of the user is looked
up with the following LDAP search:

(&(<value of auth.ldap.accountattributename>={{username}})
(objectClass=<value of auth.ldap.persontype>)
)

This should return a distinguishedName that we can use to filter for group membership. Then the following LDAP
query is executed:

(&(member=<distinguishedName from search above>)
(objectClass=<value of auth.ldap.groupclass>)

)

external_auth:
ldap:
test_ldap_user:
l*l:

- test.ping

To configure a LDAP group, append a % to the ID:

external_auth:
ldap:
test_ldap_group%:
_ l*l:

- test.echo

In addition, if there are a set of computers in the directory service that should be part of the eAuth definition, they
can be specified like this:

external_auth:
ldap:
test_ldap_group%:
- ldap('DC=corp,DC=example,DC=com'):
- test.echo

The string inside Idap() above is any valid LDAP/AD tree limiter. OU= in particular is permitted as long as it would
return a list of computer objects.

2.5.3 Peer Communication
Salt 0.9.0 introduced the capability for Salt minions to publish commands. The intent of this feature is not for Salt
minions to act as independent brokers one with another, but to allow Salt minions to pass commands to each other.

In Salt 0.10.0 the ability to execute runners from the master was added. This allows for the master to return collective
data from runners back to the minions via the peer interface.

2.5. Access Control System 155

Salt Documentation, Release 2016.3.4

The peer interface is configured through two options in the master configuration file. For minions to send commands
from the master the peer configuration is used. To allow for minions to execute runners from the master the
peer_run configuration is used.

Since this presents a viable security risk by allowing minions access to the master publisher the capability is turned
off by default. The minions can be allowed access to the master publisher on a per minion basis based on regular
expressions. Minions with specific ids can be allowed access to certain Salt modules and functions.

Peer Configuration
The configuration is done under the peer setting in the Salt master configuration file, here are a number of config-
uration possibilities.

The simplest approach is to enable all communication for all minions, this is only recommended for very secure
environments.

peer:
SR
- %

This configuration will allow minions with IDs ending in example.com access to the test, ps, and pkg module func-
tions.

peer:
. *example.com:
- test.x
- ps.*
- pkg.x

The configuration logic is simple, a regular expression is passed for matching minion ids, and then a list of expressions
matching minion functions is associated with the named minion. For instance, this configuration will also allow
minions ending with foo.org access to the publisher.

peer:

. *example.com:

- test.x

- ps.*

- pkg.*
.xfoo.org:

- test.x

- ps.*

- pkg.*

Note: Functions are matched using regular expressions.

Peer Runner Communication

Configuration to allow minions to execute runners from the master is done via the peer_run option on the master.
The peer _run configuration follows the same logic as the peer option. The only difference is that access is granted
to runner modules.

To open up access to all minions to all runners:

156 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

peer_run:
B
- %

This configuration will allow minions with IDs ending in example.com access to the manage and jobs runner func-
tions.

peer_run:
. *example.com:
- manage.*
- jobs.x

Note: Functions are matched using regular expressions.

Using Peer Communication

The publish module was created to manage peer communication. The publish module comes with a number of func-
tions to execute peer communication in different ways. Currently there are three functions in the publish module.
These examples will show how to test the peer system via the salt-call command.

To execute test.ping on all minions:

’# salt-call publish.publish * test.ping

To execute the manage.up runner:

’# salt-call publish.runner manage.up

To match minions using other matchers, use expr_form:

salt-call publish.publish 'webserv* and not G@os:Ubuntu' test.ping expr_form=
— "compound'

2.5.4 When to Use Each Authentication System

publisher_acl is useful for allowing local system users to run Salt commands without giving them root access.
If you can log into the Salt master directly, then publisher_ac allows you to use Salt without root privileges.
If the local system is configured to authenticate against a remote system, like LDAP or Active Directory, then pub-
lisher_acl will interact with the remote system transparently.

external_auth is useful for salt-api or for making your own scripts that use Salt's Python APL It can be
used at the CLI (with the —a flag) but it is more cumbersome as there are more steps involved. The only time it is
useful at the CLI is when the local system is not configured to authenticate against an external service but you still
want Salt to authenticate against an external service.

2.5.5 Examples

The access controls are manifested using matchers in these configurations:

2.5. Access Control System 157

Salt Documentation, Release 2016.3.4

publisher_acl:
fred:
- web*:
- pkg.list_pkgs
- test.x
- apache.*

In the above example, fred is able to send commands only to minions which match the specified glob target. This
can be expanded to include other functions for other minions based on standard targets (all matchers are supported
except the compound one).

external_auth:
pam:
dave:
- test.ping
- mongo*:
- network.x
- log*:
- network.x*
- pkg.*
- 'G@os:RedHat':
- kmod. *x
steve:
-

The above allows for all minions to be hit by test.ping by dave, and adds a few functions that dave can execute on
other minions. It also allows steve unrestricted access to salt commands.

Note: Functions are matched using regular expressions.

2.6 Job Management

New in version 0.9.7.

Since Salt executes jobs running on many systems, Salt needs to be able to manage jobs running on many systems.

2.6.1 The Minion proc System

Salt Minions maintain a proc directory in the Salt cachedir. The proc directory maintains files named after the
executed job ID. These files contain the information about the current running jobs on the minion and allow for jobs
to be looked up. This is located in the proc directory under the cachedir, with a default configuration it is under
/var /cache/salt/proc.

2.6.2 Functions in the saltutil Module

Salt 0.9.7 introduced a few new functions to the saltutil module for managing jobs. These functions are:
1. running Returns the data of all running jobs that are found in the proc directory.
2. find_job Returns specific data about a certain job based on job id.

3. signal_job Allows for a given jid to be sent a signal.

158 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

4. term_job Sends a termination signal (SIGTERM, 15) to the process controlling the specified job.
5. kill_job Sends a kill signal (SIGKILL, 9) to the process controlling the specified job.

These functions make up the core of the back end used to manage jobs at the minion level.

2.6.3 The jobs Runner

A convenience runner front end and reporting system has been added as well. The jobs runner contains functions
to make viewing data easier and cleaner.

The jobs runner contains a number of functions...

active

The active function runs saltutil.running on all minions and formats the return data about all running jobs in a much
more usable and compact format. The active function will also compare jobs that have returned and jobs that are
still running, making it easier to see what systems have completed a job and what systems are still being waited on.

salt-run jobs.active

lookup_jid

When jobs are executed the return data is sent back to the master and cached. By default it is cached for 24 hours,
but this can be configured via the keep_jobs option in the master configuration. Using the lookup_jid runner will
display the same return data that the initial job invocation with the salt command would display.

salt-run jobs.lookup_jid <job id number>

list_jobs

Before finding a historic job, it may be required to find the job id. 1ist_jobs will parse the cached execution data
and display all of the job data for jobs that have already, or partially returned.

salt-run jobs.list_jobs

2.6.4 Scheduling Jobs

Salt's scheduling system allows incremental executions on minions or the master. The schedule system exposes the
execution of any execution function on minions or any runner on the master.

Scheduling can be enabled by multiple methods:

« schedule option in either the master or minion config files. These require the master or minion application
to be restarted in order for the schedule to be implemented.

+ Minijon pillar data. Schedule is implemented by refreshing the minion's pillar data, for example by using
saltutil.refresh_pillar.

« The schedule state or schedule module

2.6. Job Management 159

Salt Documentation, Release 2016.3.4

Note: The scheduler executes different functions on the master and minions. When running on the master the
functions reference runner functions, when running on the minion the functions specify execution functions.

A scheduled run has no output on the minion unless the config is set to info level or higher. Refer to minion-
logging—settings.

States are executed on the minion, as all states are. You can pass positional arguments and provide a YAML dict of
named arguments.

schedule:
jobl:
function: state.sls
seconds: 3600
args:
- httpd
kwargs:
test: True

This will schedule the command: state.sls httpd test=True every 3600 seconds (every hour).

schedule:
jobl:
function: state.sls
seconds: 3600
args:
- httpd
kwargs:
test: True
splay: 15

This will schedule the command: state.sls httpd test=True every 3600 seconds (every hour) splaying the
time between 0 and 15 seconds.

schedule:
jobl:
function: state.sls
seconds: 3600

args:
- httpd

kwargs:
test: True

splay:
start: 10
end: 15

This will schedule the command: state.sls httpd test=True every 3600 seconds (every hour) splaying the
time between 10 and 15 seconds.

Schedule by Date and Time

New in version 2014.7.0.

Frequency of jobs can also be specified using date strings supported by the Python dateutil library. This requires
the Python dateutil library to be installed.

160 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

schedule:
jobl:
function: state.sls
args:
- httpd
kwargs:
test: True
when: 5:00pm

This will schedule the command: state.sls httpd test=True at 5:00 PM minion localtime.

schedule:
jobl:

function: state.sls

args:
- httpd

kwargs:
test: True

when:
- Monday 5:00pm
- Tuesday 3:00pm
- Wednesday 5:00pm
- Thursday 3:00pm
- Friday 5:00pm

This will schedule the command: state.sls httpd test=True at5:00 PM on Monday, Wednesday and Friday,
and 3:00 PM on Tuesday and Thursday.

schedule:
jobl:
function: state.sls
seconds: 3600

args:

- httpd
kwargs:

test: True
range:

start: 8:00am

end: 5:00pm

This will schedule the command: state.sls httpd test=True every 3600 seconds (every hour) between the
hours of 8:00 AM and 5:00 PM. The range parameter must be a dictionary with the date strings using the dateutil
format.

schedule:
jobl:
function: state.sls
seconds: 3600

args:
- httpd
kwargs:
test: True
range:

invert: True
start: 8:00am
end: 5:00pm

Using the invert option for range, this will schedule the command state.sls httpd test=True every 3600

2.6. Job Management 161

Salt Documentation, Release 2016.3.4

seconds (every hour) until the current time is between the hours of 8:00 AM and 5:00 PM. The range parameter must
be a dictionary with the date strings using the dateutil format.

schedule:
jobl:
function: pkg.install
kwargs:
pkgs: [{'bar': '>1.2.3'}]
refresh: true
once: '2016-01-07T14:30:00'

This will schedule the function pkg.install to be executed once at the specified time. The schedule entry job1
will not be removed after the job completes, therefore use schedule.delete to manually remove it afterwards.

The default date format is ISO 8601 but can be overridden by also specifying the once_fmt option, like this:

schedule:
jobl:
function: test.ping
once: 2015-04-22T20:21:00
once_fmt: '"%Y-%m-%dT%H:%M:%S"

Maximum Parallel Jobs Running

New in version 2014.7.0.

The scheduler also supports ensuring that there are no more than N copies of a particular routine running. Use this
for jobs that may be long-running and could step on each other or pile up in case of infrastructure outage.

The default for maxrunning is 1.

schedule:
long_running_job:
function: big_file_transfer
jid_include: True
maxrunning: 1

Cron-like Schedule

New in version 2014.7.0.

schedule:
jobl:
function: state.sls
cron: 'x/15 % % % %!
args:
- httpd
kwargs:
test: True

The scheduler also supports scheduling jobs using a cron like format. This requires the Python croniter library.

Job Data Return

New in version 2015.5.0.

162 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

By default, data about jobs runs from the Salt scheduler is returned to the master. Setting the return_job param-
eter to False will prevent the data from being sent back to the Salt master.

schedule:
jobl:
function: scheduled_job_function
return_job: False

Job Metadata

New in version 2015.5.0.

It can be useful to include specific data to differentiate a job from other jobs. Using the metadata parameter special
values can be associated with a scheduled job. These values are not used in the execution of the job, but can be used
to search for specific jobs later if combined with the return_job parameter. The metadata parameter must be
specified as a dictionary, othewise it will be ignored.

schedule:
jobl:
function: scheduled_job_function
metadata:
foo: bar

Run on Start

New in version 2015.5.0.

By default, any job scheduled based on the startup time of the minion will run the scheduled job when the minion
starts up. Sometimes this is not the desired situation. Using the run_on_start parameter set to False will cause
the scheduler to skip this first run and wait until the next scheduled run:

schedule:
jobl:
function: state.sls
seconds: 3600
run_on_start: False
args:
- httpd
kwargs:
test: True

Until and After

New in version 2015.8.0.

schedule:
jobl:
function: state.sls
seconds: 15
until: '12/31/2015 11:59pm'
args:
- httpd
kwargs:
test: True

2.6. Job Management 163

Salt Documentation, Release 2016.3.4

Using the until argument, the Salt scheduler allows you to specify an end time for a scheduled job. If this argument
is specified, jobs will not run once the specified time has passed. Time should be specified in a format supported by
the dateutil library. This requires the Python dateutil library to be installed.

New in version 2015.8.0.

schedule:
jobl:
function: state.sls
seconds: 15
after: '12/31/2015 11:59pm'
args:
- httpd
kwargs:
test: True

Using the after argument, the Salt scheduler allows you to specify an start time for a scheduled job. If this argument
is specified, jobs will not run until the specified time has passed. Time should be specified in a format supported by
the dateutil library. This requires the Python dateutil library to be installed.

Scheduling States

schedule:
log-loadavg:
function: cmd.run
seconds: 3660
args:
- 'logger -t salt < /proc/loadavg'
kwargs:
stateful: False
shell: /bin/sh

Scheduling Highstates

To set up a highstate to run on a minion every 60 minutes set this in the minion config or pillar:

schedule:
highstate:
function: state.highstate
minutes: 60

Time intervals can be specified as seconds, minutes, hours, or days.

Scheduling Runners

Runner executions can also be specified on the master within the master configuration file:

schedule:
run_my_orch:
function: state.orchestrate

hours: 6
splay: 600
args:

- orchestration.my_orch

164 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

The above configuration is analogous to running salt-run state.orch orchestration.my_orch every
6 hours.

Scheduler With Returner

The scheduler is also useful for tasks like gathering monitoring data about a minion, this schedule option will gather
status data and send it to a MySQL returner database:

schedule:

uptime:
function: status.uptime
seconds: 60
returner: mysql

meminfo:
function: status.meminfo
minutes: 5
returner: mysql

Since specifying the returner repeatedly can be tiresome, the schedule_returner option is available to specify
one or a list of global returners to be used by the minions when scheduling.

2.7 Managing the Job Cache

The Salt Master maintains a job cache of all job executions which can be queried via the jobs runner. This job cache
is called the Default Job Cache.

2.7.1 Default Job Cache

A number of options are available when configuring the job cache. The default caching system uses local
storage on the Salt Master and can be found in the job cache directory (on Linux systems this is typically
/var/cache/salt/master/jobs). The default caching system is suitable for most deployments as it does
not typically require any further configuration or management.

The default job cache is a temporary cache and jobs will be stored for 24 hours. If the default cache needs to store
jobs for a different period the time can be easily adjusted by changing the keep_jobs parameter in the Salt Master
configuration file. The value passed in is measured via hours:

keep_jobs: 24

Reducing the Size of the Default Job Cache

The Default Job Cache can sometimes be a burden on larger deployments (over 5000 minions). Disabling the job cache
will make previously executed jobs unavailable to the jobs system and is not generally recommended. Normally it
is wise to make sure the master has access to a faster IO system or a tmpfs is mounted to the jobs dir.

However, you can disable the job_cache by setting it to False in the Salt Master configuration file. Setting this
value to False means that the Salt Master will no longer cache minion returns, but a JID directory and jid file for
each job will still be created. This JID directory is necessary for checking for and preventing JID collisions.

The default location for the job cache is in the /var /cache/salt/master/jobs/ directory.

2.7. Managing the Job Cache 165

Salt Documentation, Release 2016.3.4

Setting the job_cache” to False in addition to setting the keep_jobs option to a smaller value, such as 1,
in the Salt Master configuration file will reduce the size of the Default Job Cache, and thus the burden on the Salt
Master.

Note: Changing the keep_jobs option sets the number of hours to keep old job information and defaults to 24
hours. Do not set this value to @ when trying to make the cache cleaner run more frequently, as this means the cache
cleaner will never run.

2.7.2 Additional Job Cache Options
Many deployments may wish to use an external database to maintain a long term register of executed jobs. Salt
comes with two main mechanisms to do this, the master job cache and the external job cache.

See Storing Job Results in an External System.

2.8 Storing Job Results in an External System

After a job executes, job results are returned to the Salt Master by each Salt Minion. These results are stored in the
Default Job Cache.

In addition to the Default Job Cache, Salt provides two additional mechanisms to send job results to other systems
(databases, local syslog, and others):

« External Job Cache
« Master Job Cache

The major difference between these two mechanism is from where results are returned (from the Salt Master or Salt
Minion).

2.8.1 External Job Cache - Minion-Side Returner

When an External Job Cache is configured, data is returned to the Default Job Cache on the Salt Master like usual,
and then results are also sent to an External Job Cache using a Salt returner module running on the Salt Minion.

SQL
Redis
Syslog
ODBC

Master

return data

Minions

166 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

« Advantages: Data is stored without placing additional load on the Salt Master.

« Disadvantages: Each Salt Minion connects to the external job cache, which can result in a large number of
connections. Also requires additional configuration to get returner module settings on all Salt Minions.

2.8.2 Master Job Cache - Master-Side Returner

New in version 2014.7.0.

Instead of configuring an External Job Cache on each Salt Minion, you can configure the Master Job Cache to send
job results from the Salt Master instead. In this configuration, Salt Minions send data to the Default Job Cache as
usual, and then the Salt Master sends the data to the external system using a Salt returner module running on the
Salt Master.

SQL
Redis
Syslog
ODBC

Master

return data

Minions

« Advantages: A single connection is required to the external system. This is preferred for databases and similar
systems.

« Disadvantages: Places additional load on your Salt Master.

2.8.3 Configure an External or Master Job Cache

Step 1: Understand Salt Returners

Before you configure a job cache, it is essential to understand Salt returner modules (" “returners”). Returners are
pluggable Salt Modules that take the data returned by jobs, and then perform any necessary steps to send the data to
an external system. For example, a returner might establish a connection, authenticate, and then format and transfer
data.

The Salt Returner system provides the core functionality used by the External and Master Job Cache systems, and
the same returners are used by both systems.

Salt currently provides many different returners that let you connect to a wide variety of systems. A complete
list is available at all Salt returners. Each returner is configured differently, so make sure you read and follow the
instructions linked from that page.

For example, the MySQL returner requires:
« A database created using provided schema (structure is available at MySQL returner)

« A user created with with privileges to the database

2.8. Storing Job Results in an External System 167

Salt Documentation, Release 2016.3.4

« Optional SSL configuration

A simpler returner, such as Slack or HipChat, requires:
+ An API key/version
« The target channel/room

« The username that should be used to send the message

Step 2: Configure the Returner

After you understand the configuration and have the external system ready, add the returner configuration settings
to the Salt Minion configuration file for the External Job Cache, or to the Salt Master configuration file for the Master
Job Cache.

For example, MySQL requires:

mysql.host: 'salt'
mysql.user: 'salt'
mysql.pass: 'salt'
mysql.db: 'salt'
mysql.port: 3306

Slack requires:

slack.channel: 'channel'
slack.api_key: 'key'
slack.from_name: 'name'

After you have configured the returner and added settings to the configuration file, you can enable the External or
Master Job Cache.

Step 3: Enable the External or Master Job Cache

Configuration is a single line that specifies an already-configured returner to use to send all job data to an external
system.

External Job Cache

To enable a returner as the External Job Cache (Minion-side), add the following line to the Salt Master configuration

file:

’ ext_job_cache: <returner>

For example:

’ ext_job_cache: mysql

Note: When configuring an External Job Cache (Minion-side), the returner settings are added to the Minion con-
figuration file, but the External Job Cache setting is configured in the Master configuration file.

168 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

Master Job Cache

To enable a returner as a Master Job Cache (Master-side), add the following line to the Salt Master configuration file:

’ master_job_cache: <returner>

For example:

’ master_job_cache: mysql

Verify that the returner configuration settings are in the Master configuration file, and be sure to restart the salt-
master service after you make configuration changes. (service salt-master restart).

2.9 Logging

The salt project tries to get the logging to work for you and help us solve any issues you might find along the way.

If you want to get some more information on the nitty-gritty of salt's logging system, please head over to the logging
development document, if all you're after is salt's logging configurations, please continue reading.

2.9.1 Log Levels

The log levels are ordered numerically such that setting the log level to a specific level will record all log statements
at that level and higher. For example, setting log_level: error will log statements at error, critical,
and qui et levels, although nothing should be logged at quiet level.

Most of the logging levels are defined by default in Python's logging library and can be found in the official Python
documentation. Salt uses some more levels in addition to the standard levels. All levels available in salt are shown
in the table below.

Note: Python dependencies used by salt may define and use additional logging levels. For example, the Python 2
version of the multiprocessing standard Python library uses the levels subwarning, 25 and subdebug, 5.

Level Numeric value | Description

quiet 1000 Nothing should be logged at this level
critical 50 Critical errors

error 40 Errors

warning | 30 Warnings

info 20 Normal log information

profile 15 Profiling information on salt performance
debug 10 Information useful for debugging both salt implementations and salt code
trace 5 More detailed code debugging information
garbage | 1 Even more debugging information

all 0 Everything

2.9.2 Available Configuration Settings
log_file

The log records can be sent to a regular file, local path name, or network location. Remote logging works best when
configured to use rsyslogd(8) (e.g.: Tile:///dev/log), withrsyslogd(8) configured for network logging. The for-

2.9. Logging 169

https://docs.python.org/library/logging.html#levels
https://docs.python.org/library/logging.html#levels
https://docs.python.org/2/library/multiprocessing.html#logging

Salt Documentation, Release 2016.3.4

mat for remote addresses is: <file|udp|tcp>://<host|socketpath>:<port-if-required>/<log-
facility>. Where log-facility is the symbolic name of a syslog facility as defined in the SysLogHandler
documentation . It defaults to LOG_USER.

Default: Dependent of the binary being executed, for example, for salt-master, /var/log/salt/master.

Examples:

llog_ﬁ'le: /var/log/salt/master
’log_f‘ile: /var/log/salt/minion
’log_f‘ile: file:///dev/log

’ log_file: file:///dev/log/LOG_DAEMON
’ log_file: udp://loghost:10514
log_level

Default: warning

The level of log record messages to send to the console. One of all, garbage, trace, debug, profile, info,
warning, error,critical, quiet.

log_level: warning

Note: Add log_level:
in command line use --log-level=quiet instead.

guiet in salt configuration file to completely disable logging. In case of running salt

log_level_logfile

Default: info

The level of messages to send to the log file. One of all, garbage, trace, debug, profile, info,warning,
error,critical, quiet

log_level_logfile: warning

log_datefmt

Default: %H:

The date and time format used in console log messages.

%M : %S

time.strftime.

Allowed date/time formatting can be seen on

log_datefmt: '%H:%M:%S'

170

Chapter 2. Configuring Salt

https://docs.python.org/2/library/time.html#time.strftime

Salt Documentation, Release 2016.3.4

log_datefmt_logfile

Default: %Y-%m-%d %H:%M:%S

The date and time format used in log file messages. Allowed date/time formatting can be seen on time.strftime.

log_datefmt_logfile: '%Y-%m-%d %H:%M:%S"

log_fmt_console

Default: [%(levelname)-8s] %(message)s

The format of the console logging messages. All standard python logging LogRecord attributes can be used. Salt also
provides these custom LogRecord attributes to colorize console log output:

log level name colorized by level
colorized module name

colorized process number

log message colorized by level

Note: The %(colorlevel)s, %(colorname)s, and %(colorprocess) LogRecord attributes also include

padding and enclosing brackets, [and] to match the default values of their collateral non-colorized LogRecord
attributes.

log_fmt_console: '[%(levelname)-8s] %(message)s'

log_fmt_logfile

Default: % (asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s

The format of the log file logging messages. All standard python logging LogRecord attributes can be used. Salt also
provides these custom LogRecord attributes that include padding and enclosing brackets [and]:

equivalent to [%(levelname)-8s]
equivalent to [%(name)-17s]
equivalent to [%(process)5s]

log_fmt_logfile: '%(asctime)s,%(msecs)03.0f [%(name)-17s][%(levelname)-8s] %(message)s'

log_granular_levels

Default: {}

This can be used to control logging levels more specifically. The example sets the main salt library at the *warning'
level, but sets salt.modules to log at the debug level:

log_granular_levels:
'salt': 'warning'
'salt.modules': 'debug'

2.9. Logging 171

https://docs.python.org/2/library/time.html#time.strftime
https://docs.python.org/2/library/logging.html#logrecord-attributes
https://docs.python.org/2/library/logging.html#logrecord-attributes

Salt Documentation, Release 2016.3.4

External Logging Handlers

Besides the internal logging handlers used by salt, there are some external which can be used, see the external logging
handlers document.

2.10 Salt File Server

Salt comes with a simple file server suitable for distributing files to the Salt minions. The file server is a stateless
ZeroMQ server that is built into the Salt master.

The main intent of the Salt file server is to present files for use in the Salt state system. With this said, the Salt file
server can be used for any general file transfer from the master to the minions.

2.10.1 File Server Backends
In Salt 0.12.0, the modular fileserver was introduced. This feature added the ability for the Salt Master to integrate
different file server backends. File server backends allow the Salt file server to act as a transparent bridge to external

resources. A good example of this is the g1t backend, which allows Salt to serve files sourced from one or more git
repositories, but there are several others as well. Click here for a full list of Salt's fileserver backends.

Enabling a Fileserver Backend

Fileserver backends can be enabled with the fileserver_backend option.

fileserver_backend:
- git

See the documentation for each backend to find the correct value to add to fileserver_backend in order to
enable them.

Using Multiple Backends

If fileserver_backend is not defined in the Master config file, Salt will use the roots backend, but the i le-
server_backend option supports multiple backends. When more than one backend is in use, the files from the
enabled backends are merged into a single virtual filesystem. When a file is requested, the backends will be searched
in order for that file, and the first backend to match will be the one which returns the file.

fileserver_backend:
- roots
- git

With this configuration, the environments and files defined in the file_roots parameter will be searched first,
and if the file is not found then the git repositories defined in gitfs_remotes will be searched.

Defining Environments

Just as the order of the values in fileserver_backend matters, so too does the order in which differ-
ent sources are defined within a fileserver environment. For example, given the below file_roots con-
figuration, if both /srv/salt/dev/foo.txt and /srv/salt/prod/foo.txt exist on the Master, then
salt://foo.txt would point to /srv/salt/dev/foo.txt in the dev environment, but it would point
to /srv/salt/prod/foo.txt inthe base environment.

172 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

file_roots:

base:

- /srv/salt/prod
ga:

- /srv/salt/qa

- /srv/salt/prod
dev:

- /srv/salt/dev

- /srv/salt/qga

- /srv/salt/prod

Similarly, when using the git backend, if both repositories defined below have a hotf1ix23 branch/tag, and both
of them also contain the file bar . txt in the root of the repository at that branch/tag, then salt://bar.txtin
the hotf1ix23 environment would be served from the i rst repository.

gitfs_remotes:
- https://mydomain.tld/repos/first.git
- https://mydomain.tld/repos/second.git

Note: Environments map differently based on the fileserver backend. For instance, the mappings are explic-
itly defined in roots backend, while in the VCS backends (git, hg, svn) the environments are created from
branches/tags/bookmarks/etc. For the minion backend, the files are all in a single environment, which is specified
by the minionfs_env option.

See the documentation for each backend for a more detailed explanation of how environments are mapped.

2.10.2 Dynamic Module Distribution

New in version 0.9.5.
Custom Salt execution, state, and other modules can be distributed to Salt minions using the Salt file server.

Under the root of any environment defined via the file_roots option on the master server directories corre-
sponding to the type of module can be used.

The directories are prepended with an underscore:

« _beacons

. _engines

. _grains

. _modules

« _output

. _proxy

« _renderers
« _returners
« _states

« _utils

The contents of these directories need to be synced over to the minions after Python modules have been created in
them. There are a number of ways to sync the modules.

2.10. Salt File Server 173

Salt Documentation, Release 2016.3.4

Sync Via States

The minion configuration contains an option autoload_dynamic_modules which defaults to True. This op-
tion makes the state system refresh all dynamic modules when states are run. To disable this behavior set au-
toload_dynamic_modules to False in the minion config.

When dynamic modules are autoloaded via states, modules only pertinent to the environments matched in the
master's top file are downloaded.

This is important to remember, because modules can be manually loaded from any specific environment that envi-
ronment specific modules will be loaded when a state run is executed.

Sync Via the saltutil Module
The saltutil module has a number of functions that can be used to sync all or specific dynamic modules. The saltutil

module function saltutil.sync_all will sync all module types over to a minion. For more information see:
salt.modules.saltutil

2.10.3 Requesting Files from Specific Environments

The Salt fileserver supports multiple environments, allowing for SLS files and other files to be isolated for better
organization.

For the default backend (called roots), environments are defined using the roots option. Other backends (such
as g1t fs) define environments in their own ways. For a list of available fileserver backends, see here.

Querystring Syntax

Any salt: // file URL can specify its fileserver environment using a querystring syntax, like so:

salt://path/to/file?saltenv=Ffoo

In Reactor configurations, this method must be used to pull files from an environment other than base.

In States

Minions can be instructed which environment to use both globally, and for a single state, and multiple methods for
each are available:

Globally

A minion can be pinned to an environment using the environment option in the minion config file.
Additionally, the environment can be set for a single call to the following functions:

. state.apply

. state.highstate

» state.sls

« State. top

174 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

Note: When the saltenv parameter is used to trigger a highstate using either state.apply or
state.highstate, only states from that environment will be applied.

On a Per-State Basis

Within an individual state, there are two ways of specifying the environment. The first is to add a saltenv argu-
ment to the state. This example will pull the file from the config environment:

/etc/foo/bar.conf:
file.managed:
- source: salt://foo/bar.conf
- user: foo
- mode: 600
- saltenv: config

Another way of doing the same thing is to use the querystring syntax described above:

/etc/foo/bar.conf:
file.managed:
- source: salt://foo/bar.conf?saltenv=config
- user: foo
- mode: 600

Note: Specifying the environment using either of the above methods is only necessary in cases where a state from
one environment needs to access files from another environment. If the SLS file containing this state was in the
config environment, then it would look in that environment by default.

2.10.4 File Server Configuration

The Salt file server is a high performance file server written in ZeroMQ. It manages large files quickly and with little
overhead, and has been optimized to handle small files in an extremely efficient manner.

The Salt file server is an environment aware file server. This means that files can be allocated within many root
directories and accessed by specifying both the file path and the environment to search. The individual environments
can span across multiple directory roots to create overlays and to allow for files to be organized in many flexible
ways.

Environments

The Salt file server defaults to the mandatory base environment. This environment MUST be defined and is used
to download files when no environment is specified.

Environments allow for files and sls data to be logically separated, but environments are not isolated from each other.
This allows for logical isolation of environments by the engineer using Salt, but also allows for information to be
used in multiple environments.

2.10. Salt File Server 175

Salt Documentation, Release 2016.3.4

Directory Overlay
The environment setting is a list of directories to publish files from. These directories are searched in order to
find the specified file and the first file found is returned.

This means that directory data is prioritized based on the order in which they are listed. In the case of this
file_roots configuration:

file_roots:
base:
- /srv/salt/base
- /srv/salt/failover

If a files URI is salt://httpd/httpd.conf, it will first search for the file at
/srv/salt/base/httpd/httpd.conf. If the file is found there it will be returned. If the file is not
found there, then /srv/salt/failover/httpd/httpd.conf will be used for the source.

This allows for directories to be overlaid and prioritized based on the order they are defined in the configuration.

It is also possible to have file_roots which supports multiple environments:

file_roots:
base:
- /srv/salt/base
dev:
- /srv/salt/dev
- /srv/salt/base
prod:
- /srv/salt/prod
- /srv/salt/base

This example ensures that each environment will check the associated environment directory for files first. If a file
is not found in the appropriate directory, the system will default to using the base directory.

Local File Server

New in version 0.9.8.

The file server can be rerouted to run from the minion. This is primarily to enable running Salt states without a Salt
master. To use the local file server interface, copy the file server data to the minion and set the file_roots option on
the minion to point to the directories copied from the master. Once the minion file_roots option has been set,
change the file_client option to local to make sure that the local file server interface is used.

2.10.5 The cp Module

The cp module is the home of minion side file server operations. The cp module is used by the Salt state system,
salt-cp, and can be used to distribute files presented by the Salt file server.

Escaping Special Characters

The salt:// url format <can potentially contain a query string, for example
salt://dir/file.txt?saltenv=base. You can prevent the fileclient/fileserver from interpreting ?
as the initial token of a query string by referencing the file with salt://| rather than salt://.

176 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

/etc/marathon/conf/?checkpoint:
file.managed:
- source: salt://|hw/config/?checkpoint
- makedirs: True

Environments
Since the file server is made to work with the Salt state system, it supports environments. The environments are

defined in the master config file and when referencing an environment the file specified will be based on the root
directory of the environment.

get_file

The cp.get_file function can be used on the minion to download a file from the master, the syntax looks like this:

’# salt '"x' cp.get_file salt://vimrc /etc/vimrc

This will instruct all Salt minions to download the vimrc file and copy it to /etc/vimre

Template rendering can be enabled on both the source and destination file names like so:

’# salt 'x' cp.get_file "salt://{{grains.os}}/vimrc" Jetc/vimrc template=jinja

This example would instruct all Salt minions to download the vimrc from a directory with the same name as their
OS grain and copy it to /etc/vimrc

For larger files, the cp.get_file module also supports gzip compression. Because gzip is CPU-intensive, this should
only be used in scenarios where the compression ratio is very high (e.g. pretty-printed JSON or YAML files).

To use compression, use the gz1ip named argument. Valid values are integers from 1 to 9, where 1 is the lightest
compression and 9 the heaviest. In other words, 1 uses the least CPU on the master (and minion), while 9 uses the
most.

’# salt '"x' cp.get_file salt://vimrc /etc/vimrc gzip=5

Finally, note that by default cp.get_file does not create new destination directories if they do not exist. To change
this, use the maked1rs argument:

’# salt '"x' cp.get_file salt://vimrc /etc/vim/vimrc makedirs=True

In this example, /etc/vim/ would be created if it didn't already exist.

get_dir

The cp.get_dir function can be used on the minion to download an entire directory from the master. The syntax is
very similar to get_file:

’# salt 'x' cp.get_dir salt://etc/apache2 /etc

cp.get_dir supports template rendering and gzip compression arguments just like get_file:

’# salt '"x' cp.get_dir salt://etc/{{pillar.webserver}} /etc gzip=5 template=jinja

2.10. Salt File Server 177

Salt Documentation, Release 2016.3.4

2.10.6 File Server Client Instance
A client instance is available which allows for modules and applications to be written which make use of the Salt file
server.

The file server uses the same authentication and encryption used by the rest of the Salt system for network commu-
nication.

fileclient Module

The salt/fileclient.py module is used to set up the communication from the minion to the master. When
creating a client instance using the fileclient module, the minion configuration needs to be passed in. When using
the fileclient module from within a minion module the built in __opts__ data can be passed:

import salt.minion
import salt.fileclient

def get_file(path, dest, env='base'):

rr

Used to get a single file from the Salt master

CLI Example:

salt 'x' cp.get_file salt://vimrc /etc/vimrc

Get the fileclient object

client = salt.fileclient.get_file_client(__opts__)
Call get_file

return client.get_file(path, dest, False, env)

Creating a fileclient instance outside of a minion module where the __opts__ data is not available, it needs to be
generated:

import salt.fileclient
import salt.config

def get_file(path, dest, env='base'):

rr

Used to get a single file from the Salt master

Get the configuration data

opts = salt.config.minion_config('/etc/salt/minion')
Get the fileclient object

client = salt.fileclient.get_file_client(opts)

Call get_file

return client.get_file(path, dest, False, env)

2.11 Git Fileserver Backend Walkthrough

Note: This walkthrough assumes basic knowledge of Salt. To get up to speed, check out the Salt Walkthrough.

The gitfs backend allows Salt to serve files from git repositories. It can be enabled by adding git to the file-
server_backend list, and configuring one or more repositories in gitfs_remotes.

178 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

Branches and tags become Salt fileserver environments.

Note: Branching and tagging can result in a lot of potentially-conflicting top files, for this reason it may be useful
toset top_file_merging_strategy to same in the minions' config files if the top files are being managed in
a GitFS repo.

2.11.1 Installing Dependencies
Beginning with version 2014.7.0, both pygit2 and Dulwich are supported as alternatives to GitPython. The desired
provider can be configured using the gitfs_provider parameter in the master config file.

If gitfs_provider is not configured, then Salt will prefer pygit2 if a suitable version is available, followed by
GitPython and Dulwich.

Note: It is recommended to always run the most recent version of any the below dependencies. Certain features of
gitfs may not be available without the most recent version of the chosen library.

pygit2
The minimum supported version of pygit2 is 0.20.3. Availability for this version of pygit2 is still limited, though the
SaltStack team is working to get compatible versions available for as many platforms as possible.

For the Fedora/EPEL versions which have a new enough version packaged, the following command would be used
to install pygit2:

’# yum install python-pygit2

Provided a valid version is packaged for Debian/Ubuntu (which is not currently the case), the package name would
be the same, and the following command would be used to install it:

’# apt-get install python-pygit2

If pygit2 is not packaged for the platform on which the Master is running, the pygit2 website has installation instruc-
tions here. Keep in mind however that following these instructions will install libgit2 and pygit2 without system
packages. Additionally, keep in mind that SSH authentication in pygit2 requires libssh2 (not libssh) development
libraries to be present before libgit2 is built. On some Debian-based distros pkg-config is also required to link
libgit2 with libssh2.

Additionally, version 0.21.0 of pygit2 introduced a dependency on python-cffi, which in turn depends on newer
releases of libffi. Upgrading libffi is not advisable as several other applications depend on it, so on older LTS linux
releases pygit2 0.20.3 and libgit2 0.20.0 is the recommended combination. While these are not packaged in the official
repositories for Debian and Ubuntu, SaltStack is actively working on adding packages for these to our repositories.
The progress of this effort can be tracked here.

Warning: pygit2 is actively developed and frequently makes non-backwards-compatible API changes, even
in minor releases. It is not uncommon for pygit2 upgrades to result in errors in Salt. Please take care when
upgrading pygit2, and pay close attention to the changelog, keeping an eye out for API changes. Errors can be
reported on the SaltStack issue tracker.

2.11. Git Fileserver Backend Walkthrough 179

https://github.com/libgit2/pygit2
https://www.samba.org/~jelmer/dulwich/
https://github.com/gitpython-developers/GitPython
https://github.com/libgit2/pygit2
https://github.com/gitpython-developers/GitPython
https://www.samba.org/~jelmer/dulwich/
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
http://www.pygit2.org/install.html
https://libgit2.github.com/
https://github.com/libgit2/pygit2
http://www.libssh2.org/
https://libgit2.github.com/
https://libgit2.github.com/
https://pypi.python.org/pypi/cffi
http://sourceware.org/libffi/
http://sourceware.org/libffi/
https://github.com/libgit2/pygit2
https://libgit2.github.com/
https://repo.saltstack.com
https://github.com/saltstack/salt-pack/issues/70
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2
https://github.com/libgit2/pygit2#changelog

Salt Documentation, Release 2016.3.4

GitPython

GitPython 0.3.0 or newer is required to use GitPython for gitfs. For RHEL-based Linux distros, a compatible version
is available in EPEL, and can be easily installed on the master using yum:

’# yum install GitPython

Ubuntu 14.04 LTS and Debian Wheezy (7.x) also have a compatible version packaged:

’# apt-get install python-git

If your master is running an older version (such as Ubuntu 12.04 LTS or Debian Squeeze), then you will need to install
GitPython using either pip or easy_install (it is recommended to use pip). Version 0.3.2.RC1 is now marked as the
stable release in PyPI, so it should be a simple matter of running pip install GitPython (oreasy_install
GitPython) as root.

Warning: Keep in mind that if GitPython has been previously installed on the master using pip (even if
it was subsequently uninstalled), then it may still exist in the build cache (typically /tmp/pip-build-
root/GitPython) if the cache is not cleared after installation. The package in the build cache will override
any requirement specifiers, so if you try upgrading to version 0.3.2.RC1 by running pip install 'Git-
Python==0.3.2.RC1" then it will ignore this and simply install the version from the cache directory. There-
fore, it may be necessary to delete the GitPython directory from the build cache in order to ensure that the
specified version is installed.

Warning: GitPython 2.0.9 and newer is not compatible with Python 2.6. If installing GitPython using pip on a
machine running Python 2.6, make sure that a version earlier than 2.0.9 is installed. This can be done on the CLI
by running pip install 'GitPython<2.0.9' orinapip.installed state using the following SLS:

GitPython:
pip.installed:
- name: 'GitPython < 2.0.9'

Dulwich

Dulwich 0.9.4 or newer is required to use Dulwich as backend for gitfs.

Dulwich is available in EPEL, and can be easily installed on the master using yum:

’# yum install python-dulwich

For APT-based distros such as Ubuntu and Debian:

’# apt-get install python-dulwich

Important: If switching to Dulwich from GitPython/pygit2, or switching from GitPython/pygit2 to Dulwich, it is
necessary to clear the gitfs cache to avoid unpredictable behavior. This is probably a good idea whenever switching
toanew gitfs_provider,but it is less important when switching between GitPython and pygit2.

Beginning in version 2015.5.0, the gitfs cache can be easily cleared using the fileserver.clear_cache runner.

180 Chapter 2. Configuring Salt

https://github.com/gitpython-developers/GitPython
http://www.pip-installer.org/
https://github.com/gitpython-developers/GitPython
https://github.com/gitpython-developers/GitPython

Salt Documentation, Release 2016.3.4

salt-run fileserver.clear_cache backend=git

If the Master is running an earlier version, then the cache can be cleared by removing the gitfs
and file_lists/gitfs directories (both paths relative to the master cache directory, usually
/var/cache/salt/master).

rm -rf /var/cache/salt/master{,/file_lists}/gitfs

2.11.2 Simple Configuration

To use the gitfs backend, only two configuration changes are required on the master:

1. Include git inthe fileserver_backend list in the master config file:

fileserver_backend:
- git

2. Specify one or more git://, https://, file://,or ssh:// URLsin gitfs_remotes to configure
which repositories to cache and search for requested files:

gitfs_remotes:
- https://github.com/saltstack-formulas/salt-formula.git

SSH remotes can also be configured using scp-like syntax:

gitfs_remotes:
- git@github.com:user/repo.git
- ssh://user@domain.tld/path/to/repo.git

Information on how to authenticate to SSH remotes can be found here.

Note: Dulwich does not recognize ssh:// URLs, git+ssh:// must be used instead. Salt version 2015.5.0
and later will automatically add the git+ to the beginning of these URLs before fetching, but earlier Salt
versions will fail to fetch unless the URL is specified using git+ssh://.

3. Restart the master to load the new configuration.

Note: In a master/minion setup, files from a gitfs remote are cached once by the master, so minions do not need
direct access to the git repository.

2.11.3 Multiple Remotes

The gitfs_remotes option accepts an ordered list of git remotes to cache and search, in listed order, for requested
files.

A simple scenario illustrates this cascading lookup behavior:

If the gitfs_remotes option specifies three remotes:

2.11. Git Fileserver Backend Walkthrough 181

Salt Documentation, Release 2016.3.4

gitfs_remotes:
- git://github.com/example/first.git
- https://github.com/example/second.git
- file:///root/third

And each repository contains some files:

first.git:
top.sls
edit/vim.sls
edit/vimrc
nginx/init.sls

second.git:
edit/dev_vimrc
haproxy/init.sls

third:
haproxy/haproxy.conf
edit/dev_vimrc

Salt will attempt to lookup the requested file from each gitfs remote repository in the order in which they are defined
in the configuration. The git://github.com/example/first.git remote will be searched first. If the requested file is
found, then it is served and no further searching is executed. For example:

+ A request for the file salt://haproxy/init.sls will be served from the https://github.com/example/second.git
git repo.

« A request for the file salt://haproxy/haproxy.conf will be served from the file:///root/third repo.

Note: This example is purposefully contrived to illustrate the behavior of the gitfs backend. This example should
not be read as a recommended way to lay out files and git repos.

The file:// prefix denotes a git repository in a local directory. However, it will still use the given file:// URL as a
remote, rather than copying the git repo to the salt cache. This means that any refs you want accessible must exist
as local refs in the specified repo.

Warning: Salt versions prior to 2014.1.0 are not tolerant of changing the order of remotes or modifying the
URI of existing remotes. In those versions, when modifying remotes it is a good idea to remove the gitfs cache
directory (/var/cache/salt/master/gitfs) before restarting the salt-master service.

2.11.4 Per-remote Configuration Parameters

New in version 2014.7.0.
The following master config parameters are global (that is, they apply to all configured gitfs remotes):
. gitfs_base
« gitfs_root
« gitfs_mountpoint (new in 2014.7.0)
« gitfs_user (pygit2 only, new in 2014.7.0)
« gitfs_password (pygit2 only, new in 2014.7.0)

182 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

« gitfs_insecure_auth (pygit2 only, new in 2014.7.0)

gitfs_pubkey (pygit2 only, new in 2014.7.0)
- gitfs_privkey (pygit2 only, new in 2014.7.0)
« gitfs_passphrase (pygit2 only, new in 2014.7.0)

These parameters can now be overridden on a per-remote basis. This allows for a tremendous amount of customiza-
tion. Here's some example usage:

gitfs_provider: pygit2
gitfs_base: develop

gitfs_remotes:

- https://foo.com/foo.git

- https://foo.com/bar.git:
- root: salt
- mountpoint: salt://bar
- base: salt-base

- https://foo.com/bar.git:
- name: second_bar_repo
- root: other/salt
- mountpoint: salt://other/bar
- base: salt-base

- http://foo.com/baz.git:
- root: salt/states
- user: joe
- password: mysupersecretpassword
- dinsecure_auth: True

Important: There are two important distinctions which should be noted for per-remote configuration:
1. The URL of a remote which has per-remote configuration must be suffixed with a colon.

2. Per-remote configuration parameters are named like the global versions, with the gitfs_ removed from the
beginning. The exception being the name parameter which is only available to per-remote configurations.

In the example configuration above, the following is true:

1. The first and fourth gitfs remotes will use the develop branch/tag as the base environment, while the
second and third will use the salt-base branch/tag as the base environment.

2. The first remote will serve all files in the repository. The second remote will only serve files from the salt
directory (and its subdirectories). The third remote will only server files from the other/salt directory
(and its subdirectories), while the fourth remote will only serve files from the salt/states directory (and
its subdirectories).

3. The first and fourth remotes will have files located under the root of the Salt fileserver namespace (salt://).
The files from the second remote will be located under salt://bar, while the files from the third remote
will be located under salt://other/bar.

4. The second and third remotes reference the same repository and unique names need to be declared for duplicate
gitfs remotes.

5. The fourth remote overrides the default behavior of not authenticating to insecure (non-HTTPS) remotes.

2.11. Git Fileserver Backend Walkthrough 183

Salt Documentation, Release 2016.3.4

2.11.5 Serving from a Subdirectory

The gitfs_root parameter allows files to be served from a subdirectory within the repository. This allows for
only part of a repository to be exposed to the Salt fileserver.

Assume the below layout:

.gitignore

README. txt

foo/

foo/bar/
foo/bar/one.txt
foo/bar/two.txt
foo/bar/three.txt
foo/baz/
foo/baz/top.sls
foo/baz/edit/vim.sls
foo/baz/edit/vimrc
foo/baz/nginx/init.sls

The below configuration would serve only the files under foo/baz, ignoring the other files in the repository:

gitfs_remotes:
- git://mydomain.com/stuff.git

gitfs_root: foo/baz

The root can also be configured on a per-remote basis.

2.11.6 Mountpoints

New in version 2014.7.0.

The gitfs_mountpoint parameter will prepend the specified path to the files served from gitfs. This allows an
existing repository to be used, rather than needing to reorganize a repository or design it around the layout of the
Salt fileserver.

Before the addition of this feature, if a file being served up via gitfs was deeply nested within the root directory (for
example, salt://webapps/foo/files/foo.conf,it would be necessary to ensure that the file was properly
located in the remote repository, and that all of the the parent directories were present (for example, the directories
webapps/foo/files/ would need to exist at the root of the repository).

The below example would allow for a file foo.conf at the root of the repository to be served up from the Salt
fileserver path salt://webapps/foo/files/foo.conf.

gitfs_remotes:
- https://mydomain.com/stuff.git

gitfs_mountpoint: salt://webapps/foo/files

Mountpoints can also be configured on a per-remote basis.

2.11.7 Using gitfs Alongside Other Backends

Sometimes it may make sense to use multiple backends; for instance, if ss files are stored in git but larger files are
stored directly on the master.

184 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

The cascading lookup logic used for multiple remotes is also used with multiple backends. If the file-
server_backend option contains multiple backends:

fileserver_backend:
- roots
- git

Then the roots backend (the default backend of files in /srv/salt) will be searched first for the requested file;
then, if it is not found on the master, each configured git remote will be searched.

2.11.8 Branches, Environments, and Top Files

When using the gitfs backend, branches, and tags will be mapped to environments using the branch/tag name as an
identifier.

There is one exception to this rule: the master branch is implicitly mapped to the base environment.

So, for a typical base, ga, dev setup, the following branches could be used:

master

ga
dev

top. sls files from different branches will be merged into one at runtime. Since this can lead to overly complex
configurations, the recommended setup is to have a separate repository, containing only the top. sls file with just
one single master branch.

To map a branch other than master as the base environment, use the gitfs_base parameter.

gitfs_base: salt-base

The base can also be configured on a per-remote basis.

2.11.9 Environment Whitelist/Blacklist

New in version 2014.7.0.

The gitfs_env_whitelist and gitfs_env_blacklist parameters allow for greater control over which
branches/tags are exposed as fileserver environments. Exact matches, globs, and regular expressions are supported,
and are evaluated in that order. If using a regular expression, » and $ must be omitted, and the expression must
match the entire branch/tag.

gitfs_env_whitelist:
- base
- vl.x
- "mybranch\d+'

Note: v1.*,in this example, will match as both a glob and a regular expression (though it will have been matched
as a glob, since globs are evaluated before regular expressions).

The behavior of the blacklist/whitelist will differ depending on which combination of the two options is used:

« Ifonlygitfs_env_whitelist isused, then only branches/tags which match the whitelist will be available
as environments

2.11. Git Fileserver Backend Walkthrough 185

Salt Documentation, Release 2016.3.4

« Ifonly gitfs_env_blacklist isused, then the branches/tags which match the blacklist will not be avail-
able as environments

« If both are used, then the branches/tags which match the whitelist, but do not match the blacklist, will be
available as environments.

2.11.10 Authentication

pysgit2

New in version 2014.7.0.

Both HTTPS and SSH authentication are supported as of version 0.20.3, which is the earliest version of pygit2
supported by Salt for gitfs.

Note: The examples below make use of per-remote configuration parameters, a feature new to Salt 2014.7.0. More
information on these can be found here.

HTTPS

For HTTPS repositories which require authentication, the username and password can be provided like so:

gitfs_remotes:
- https://domain.tld/myrepo.git:
- user: git
- password: mypassword

If the repository is served over HTTP instead of HTTPS, then Salt will by default refuse to authenticate to it. This
behavior can be overridden by adding an insecure_auth parameter:

gitfs_remotes:
- http://domain.tld/insecure_repo.git:
- user: git
- password: mypassword
- insecure_auth: True

SSH

SSH repositories can be configured using the ssh: // protocol designation, or using scp-like syntax. So, the follow-
ing two configurations are equivalent:

« ssh://git@github.com/user/repo.git
. git@github.com:user/repo.git

Both gitfs_pubkey and gitfs_privkey (or their per-remote counterparts) must be configured in order to
authenticate to SSH-based repos. If the private key is protected with a passphrase, it can be configured using
gitfs_passphrase (or simply passphrase if being configured per-remote). For example:

gitfs_remotes:
- git@github.com:user/repo.git:
- pubkey: /root/.ssh/id_rsa.pub

186 Chapter 2. Configuring Salt

https://github.com/libgit2/pygit2

Salt Documentation, Release 2016.3.4

- privkey: /root/.ssh/id_rsa
- passphrase: myawesomepassphrase

Finally, the SSH host key must be added to the known_hosts file.

GitPython

With GitPython, only passphrase-less SSH public key authentication is supported. The auth parameters (pubkey,
privkey, etc.) shown in the pygit2 authentication examples above do not work with GitPython.

gitfs_remotes:
- ssh://git@github.com/example/salt-states.git

Since GitPython wraps the git CLI, the private key must be located in ~/ . ssh/id_rsa for the user under which the
Master is running, and should have permissions of 0600. Also, in the absence of a user in the repo URL, GitPython
will (just as SSH does) attempt to login as the current user (in other words, the user under which the Master is
running, usually root).

If a key needs to be used, then ~/.ssh/config can be configured to use the desired key. Information on how to
do this can be found by viewing the manpage for ssh_config. Here's an example entry which can be added to
the ~/.ssh/conf1ig to use an alternate key for gitfs:

Host github.com
IdentityFile /root/.ssh/id_rsa_gitfs

The Host parameter should be a hostname (or hostname glob) that matches the domain name of the git repository.

It is also necessary to add the SSH host key to the known_hosts file. The exception to this would be if strict
host key checking is disabled, which can be done by adding StrictHostKeyChecking no to the entry in
~/.ssh/config

Host github.com
IdentityFile /root/.ssh/id_rsa_gitfs
StrictHostKeyChecking no

However, this is generally regarded as insecure, and is not recommended.

Adding the SSH Host Key to the known_hosts File

To use SSH authentication, it is necessary to have the remote repository's SSH host key in the
~/ .ssh/known_hosts file. If the master is also a minion, this can be done using the ssh. set_known_host
function:

salt mymaster ssh.set_known_host user=root hostname=github.com
mymaster:

ssh-rsa
fingerprint:
16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48
hostname:
[1]07efwWwqOD4kwO3BhoIGa®loR5AA=|BIXVtmcTbPER+68HVvXmceodDcfI=
key:

2.11. Git Fileserver Backend Walkthrough 187

https://github.com/gitpython-developers/GitPython
https://github.com/gitpython-developers/GitPython
https://github.com/gitpython-developers/GitPython

Salt Documentation, Release 2016.3.4

X
—AAAAB3NzaClyc2EAAAABIWAAAQEAQ2A7ThRGmdnm9tUDbO9IDSWBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrppOy
—yMf+Se8xhHTVKSCZIFImWwoGembUoWf9nzpIloaSjB+weqqUUmpaaasXVal72J+UX2B+2RPW3RcTOe0zQgqlIL
—w4yCE6ghb0DgnTW1g7+wC604ydGXA8VJiS5ap43IXiUFFAaQ==

old:
None
status:
updated

Vhp5HdAEIcKr6p
BRKrTJvdsjE33J

If not, then the easiest way to add the key is to su to the user (usually root) under which the salt-master runs and
attempt to login to the server via SSH:

$ su -

Password:

ssh github.com

The authenticity of host 'github.com (192.30.252.128)' can't be established.

RSA key fingerprint is 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'github.com,192.30.252.128' (RSA) to the list of known hosts.
Permission denied (publickey).

It doesn't matter if the login was successful, as answering yes will write the fingerprint to the known_hosts file.

Verifying the Fingerprint

To verify that the correct fingerprint was added, it is a good idea to look it up. One way to do this is to use nmap:

$ nmap -p 22 github.com --script ssh-hostkey

Starting Nmap 5.51 (http://nmap.org) at 2014-08-18 17:47 CDT
Nmap scan report for github.com (192.30.252.129)

Host is up (0.17s latency).

Not shown: 996 filtered ports

PORT STATE SERVICE

22 /tcp open ssh

| ssh-hostkey: 1024 ad:1c:08:a4:40:e3:6f:9c:f5:66:26:5d:4b:33:5d:8c (DSA)
| _2048 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48 (RSA)
80/tcp open http

443 /tcp open https

9418/tcp open git

Nmap done: 1 IP address (1 host up) scanned in 28.78 seconds

Another way is to check one's own known_hosts file, using this one-liner:

$ ssh-keygen -1 -f /dev/stdin <<< ssh-keyscan github.com 2>/dev/null’ | awk '{print $2}'
16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48

Warning: AWS tracks usage of nmap and may flag it as abuse. On AWS hosts, the ssh-keygen method is
recommended for host key verification.

Note: As of OpenSSH 6.8 the SSH fingerprint is now shown as a base64-encoded SHA256 checksum of the host key.
So, instead of the fingerprint looking like 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48, it

188 Chapter 2. Configuring Salt

http://www.openssh.com/txt/release-6.8

Salt Documentation, Release 2016.3.4

would look like SHA256 : nThbg6kXUpJWG17E1IGOCspRomTxdCARLViKw6E5SY8.

2.11.11 Refreshing gitfs Upon Push

By default, Salt updates the remote fileserver backends every 60 seconds. However, if it is desirable to refresh quicker
than that, the Reactor System can be used to signal the master to update the fileserver on each push, provided that
the git server is also a Salt minion. There are three steps to this process:

1. On the master, create a file /srv/reactor/update_fileserver.sls, with the following contents:

update_fileserver:
runner.fileserver.update

2. Add the following reactor configuration to the master config file:

reactor:
- 'salt/fileserver/gitfs/update':
- /srv/reactor/update_fileserver.sls

3. On the git server, add a post-receive hook

(a) If the user executing git push is the same as the minion user, use the following hook:

#!/usr/bin/env sh
salt-call event.fire_master update salt/fileserver/gitfs/update

(a) To enable other git users to run the hook after a push, use sudo in the hook script:

#!/usr/bin/env sh
sudo -u root salt-call event.fire_master update salt/fileserver/gitfs/
—update

2. If using sudo in the git hook (above), the policy must be changed to permit all users to fire the event. Add the
following policy to the sudoers file on the git server.

Cmnd_Alias SALT_GIT_HOOK = /bin/salt-call event.fire_master update salt/
—fileserver/gitfs/update

Defaults!SALT_GIT_HOOK !requiretty

ALL ALL=(root) NOPASSWD: SALT_GIT_HOOK

The update argument right after event. fire_master in this example can really be anything, as it represents
the data being passed in the event, and the passed data is ignored by this reactor.

Similarly, the tag name salt/fileserver/gitfs/update can be replaced by anything, so long as the usage
is consistent.

The root user name in the hook script and sudo policy should be changed to match the user under which the minion
is running.

2.11.12 Using Git as an External Pillar Source

The git external pillar (a.k.a. git_pillar) has been rewritten for the 2015.8.0 release. This rewrite brings with it
pygit2 support (allowing for access to authenticated repositories), as well as more granular support for per-remote
configuration.

2.11. Git Fileserver Backend Walkthrough 189

http://www.git-scm.com/book/en/Customizing-Git-Git-Hooks#Server-Side-Hooks
https://github.com/libgit2/pygit2

Salt Documentation, Release 2016.3.4

To make use of the new features, changes to the git ext_pillar configuration must be made. The new configuration
schema is detailed here.

For Salt releases before 2015.8.0, click here for documentation.

2.11.13 Why aren't my custom modules/states/etc. syncing to my Minions?

In versions 0.16.3 and older, when using the git fileserver backend, certain versions of GitPython may generate errors
when fetching, which Salt fails to catch. While not fatal to the fetch process, these interrupt the fileserver update
that takes place before custom types are synced, and thus interrupt the sync itself. Try disabling the git fileserver
backend in the master config, restarting the master, and attempting the sync again.

This issue is worked around in Salt 0.16.4 and newer.

2.12 MinionFS Backend Walkthrough

New in version 2014.1.0.

Note: This walkthrough assumes basic knowledge of Salt and cp. push. To get up to speed, check out the walk-
through.

Sometimes it is desirable to deploy a file located on one minion to one or more other minions. This is supported in
Salt, and can be accomplished in two parts:

1. Minion support for pushing files to the master (using cp. push)
2. The minionfs fileserver backend

This walkthrough will show how to use both of these features.

2.12.1 Enabling File Push

To set the master to accept files pushed from minions, the 1 le_recv option in the master config file must be set
to True (the default is False).

file_recv: True

Note: This change requires a restart of the salt-master service.

2.12.2 Pushing Files

Once this has been done, files can be pushed to the master using the cp. push function:

salt 'minion-id' cp.push /path/to/the/file

This command will store the file in a subdirectory named minions under the master's cachedir. On most masters,
this path will be /var/cache/salt/master/minions. Within this directory will be one directory for each
minion which has pushed a file to the master, and underneath that the full path to the file on the minion. So, for
example, if a minion with an ID of dev1 pushed a file /var/log/myapp. log to the master, it would be saved
to /var/cache/salt/master/minions/devl/var/log/myapp.log.

190 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

2.12.3 Serving Pushed Files Using MinionFS

While it is certainly possible to add /var/cache/salt/master/minions to the master's file_roots
and serve these files, it may only be desirable to expose files pushed from certain minions. Adding
/var /cache/salt/master/minions/<minion-id> for each minion that needs to be exposed can be cum-
bersome and prone to errors.

Enter minionfs. This fileserver backend will make files pushed using cp. push available to the Salt fileserver,
and provides an easy mechanism to restrict which minions' pushed files are made available.

Simple Configuration

To use the minionfs backend, add minion to the list of backends in the fileserver_backend configuration
option on the master:

file_recv: True

fileserver_backend:
- roots
- minion

Note: As described earlier, file_recv: True is also needed to enable the master to receive files pushed from
minions. As always, changes to the master configuration require a restart of the salt-master service.

Files made available via minionfs are by default located at salt://<minion-id>/path/to/file. Think
back to the earlier example, in which dev1 pushed a file /var/log/myapp. log to the master. Withminionfs
enabled, this file would be addressable in Salt at salt://devl/var/log/myapp. log.

If many minions have pushed to the master, this will result in many directories in the root of the Salt fileserver. For
this reason, it is recommended to use the minionfs_mountpoint config option to organize these files underneath
a subdirectory:

minionfs_mountpoint: salt://minionfs

Using the above mountpoint, the file in the example would be located at

salt://minionfs/devl/var/log/myapp.log.

Restricting Certain Minions' Files from Being Available Via MinionFS

A whitelist and blacklist can be used to restrict the minions whose pushed files are available via minionfs. These
lists can be managed using the minionfs_whitelist and minionfs_blacklist config options. Click the
links for both of them for a detailed explanation of how to use them.

A more complex configuration example, which uses both a whitelist and blacklist, can be found below:

file_recv: True
fileserver_backend:
- roots
- minion

minionfs_mountpoint: salt://minionfs

minionfs_whitelist:

2.12. MinionFS Backend Walkthrough 191

Salt Documentation, Release 2016.3.4

- hosto4
- webx
- "mail\d+\.domain\.tld'

minionfs_whitelist:
- web21

Potential Concerns

« There is no access control in place to restrict which minions have access to files served up by minionfs. All
minions will have access to these files.

« Unless the minionfs_whitelist and/or minionfs_blacklist config options are used, all minions
which push files to the master will have their files made available viaminionfs.

2.13 Salt Package Manager

The Salt Package Manager, or SPM, enables Salt formulas to be packaged to simplify distribution to Salt masters. The
design of SPM was influenced by other existing packaging systems including RPM, Yum, and Pacman.

SLS DD Packaging System

@ Repo System

0@

Salt Master

®

¢
bk

/srv/spm/salt

Note: The previous diagram shows each SPM component as a different system, but this is not required. You can
build packages and host the SPM repo on a single Salt master if you'd like.

192 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

Packaging System

The packaging system is used to package the state, pillar, file templates, and other files used by your formula into
a single file. After a formula package is created, it is copied to the Repository System where it is made available to
Salt masters.

See Building SPM Packages
Repo System

The Repo system stores the SPM package and metadata files and makes them available to Salt masters via http(s),
ftp, or file URLs. SPM repositories can be hosted on a Salt Master, a Salt Minion, or on another system.

See Distributing SPM Packages
Salt Master

SPM provides Salt master settings that let you configure the URL of one or more SPM repos. You can then quickly
install packages that contain entire formulas to your Salt masters using SPM.

See Installing SPM Packages

Contents

2.13.1 Building SPM Packages

The first step when using Salt Package Manager is to build packages for each of of the formulas that you want to
distribute. Packages can be built on any system where you can install Salt.

Package Build Overview

To build a package, all state, pillar, jinja, and file templates used by your formula are assembled into a folder on
the build system. These files can be cloned from a Git repository, such as those found at the saltstack-formulas
organization on GitHub, or copied directly to the folder.

The following diagram demonstrates a typical formula layout on the build system:

—
Packaging System Debian apache.config.jinja
—

e
’ files RedHat apache.config.jinja
H —B —H
FORMULA init.sls
———

myapp-formula myapp

Suse apache.config.jinja

myapp_statel.sls

R
" .

salt_packages_source pillar.example myapp_state2.sls

_— —

templates config.tmpl

—» >

anotherapp_formula

In this example, all formula files are placed in a myapp-formula folder. This is the folder that is targeted by the
spm build command when this package is built.

Within this folder, pillar data is placed in a pillar.example file at the root, and all state, jinja, and template files
are placed within a subfolder that is named after the application being packaged. State files are typically contained
within a subfolder, similar to how state files are organized in the state tree. Any non-pillar files in your package that
are not contained in a subfolder are placed at the root of the spm state tree.

2.13. Salt Package Manager 193

https://github.com/saltstack-formulas

Salt Documentation, Release 2016.3.4

Additionally, a FORMULA file is created and placed in the root of the folder. This file contains package metadata that
is used by SPM.

Package Installation Overview

When building packages, it is useful to know where files are installed on the Salt master. During installation, all files
except pillar.example and FORMULA are copied directly to the spm state tree on the Salt master (located at
\srv\spm\salt).

If a pillar.example file is present in the root, it is renamed to <formula name>.sls.orig and placed in
the pillar_path.

Folders and files are
Repo System — copied to the spm

state tree

Salt Master

@ @ /srv/spm/salt

(renamed)

pillar.example
—’- -> - is renamed and then
. . copied to the local
pillar.example myapp.sls.orig pillar path
/srv/pillar

Note: Even though the pillar data file is copied to the pillar root, you still need to manually assign this pillar data
to systems using the pillar top file. This file can also be duplicated and renamed so the . or1ig version is left intact
in case you need to restore it later.

Building an SPM Formula Package

1. Assemble formula files in a folder on the build system.
2. Create a FORMULA file and place it in the root of the package folder.
3. Run spm build <folder name>. The package is built and placed in the /srv/spm_build folder.

spm build /path/to/salt-packages-source/myapp-formula

4. Copy the . spm file to a folder on the repository system.

Types of Packages

SPM supports different types of packages. The function of each package is denoted by its name. For instance,
packages which end in —formu'la are considered to be Salt States (the most common type of formula). Packages
which end in —conf contain configuration which is to be placed in the /etc/salt/ directory. Packages which
do not contain one of these names are treated as if they have a —~formula name.

194 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

formula

By default, most files from this type of package live in the /srv/spm/salt/ directory. The exception is the
pillar.example file, which will be renamed to <package_name>.sls and placed in the pillar directory
(/srv/spm/pillar/ by default).

reactor

By default, files from this type of package live in the /srv/spm/reactor/ directory.

conf

The files in this type of package are configuration files for Salt, which normally live in the /etc/salt/ directory.
Configuration files for packages other than Salt can and should be handled with a Salt State (using a formula type
of package).

Technical Information

Packages are built using BZ2-compressed tarballs. By default, the package database is stored using the sqlite3
driver (see Loader Modules below).

Support for these are built into Python, and so no external dependencies are needed.

All other files belonging to SPM use YAML, for portability and ease of use and maintainability.
SPM-Specific Loader Modules
SPM was designed to behave like traditional package managers, which apply files to the filesystem and store package

metadata in a local database. However, because modern infrastructures often extend beyond those use cases, certain
parts of SPM have been broken out into their own set of modules.

Package Database

By default, the package database is stored using the sqlite3 module. This module was chosen because support
for SQLite3 is built into Python itself.

Please see the SPM Development Guide for information on creating new modules for package database management.

Package Files

By default, package files are installed using the Local module. This module applies files to the local filesystem, on
the machine that the package is installed on.

Please see the SPM Development Guide for information on creating new modules for package file management.

2.13. Salt Package Manager 195

Salt Documentation, Release 2016.3.4

2.13.2 Distributing SPM Packages

SPM packages can be distributed to Salt masters over HTTP(S), FTP, or through the file system. The SPM repo can be
hosted on any system where you can install Salt. Salt is installed so you can run the spm create_repo command
when you update or add a package to the repo. SPM repos do not require the salt-master, salt-minion, or any other
process running on the system.

Note: If you are hosting the SPM repo on a system where you can not or do not want to install Salt, you can run the
spm create_repo command on the build system and then copy the packages and the generated SPM-METADATA
file to the repo. You can also install SPM files directly on a Salt master, bypassing the repository completely.

Setting up a Package Repository

After packages are built, the generated SPM files are placed in the srv/spm_build folder.

Where you place the built SPM files on your repository server depends on how you plan to make them available to
your Salt masters.

You can share the srv/spm_build folder on the network, or copy the files to your FTP or Web server.

Adding a Package to the repository

New packages are added by simply copying the SPM file to the repo folder, and then generating repo metadata.

Generate Repo Metadata

Each time you update or add an SPM package to your repository, issue an spm create_repo command:

spm create_repo /srv/spm_build

SPM generates the repository metadata for all of the packages in that directory and places it in an SPM-METADATA
file at the folder root. This command is used even if repository metadata already exists in that directory.

2.13.3 Installing SPM Packages

SPM packages are installed to your Salt master, where they are available to Salt minions using all of Salt's package
management functions.

Configuring Remote Repositories

Before SPM can use a repository, two things need to happen. First, the Salt master needs to know where the reposi-
tory is through a configuration process. Then it needs to pull down the repository metadata.

Repository Configuration Files

Repositories are configured by adding each of them to the /etc/salt/spm.repos.d/spm.repo file on each
Salt master. This file contains the name of the repository, and the link to the repository:

196 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

my_repo:
url: https://spm.example.com/

The URL can use http, https, ftp, or file.

my_repo:
url: file:///srv/spm_build

Updating Local Repository Metadata

After the repository is configured on the Salt master, repository metadata is downloaded using the spm up-
date_repo command:

spm update_repo

Note: A file for each repo is placed in /var/cache/salt/spm on the Salt master after you run the update_repo
command. If you add a repository and it does not seem to be showing up, check this path to verify that the repository
was found.

Update File Roots

SPM packages are installed to the srv/spm/salt folder on your Salt master. This path needs to be added to the
file roots on your Salt master manually.

file_roots:
base:
1. /srv/salt
2. /srv/spm/salt

Restart the salt-master service after updating the file_roots setting.

Installing Packages

To install a package, use the spm install command:

spm install apache

Warning: Currently, SPM does not check to see if files are already in place before installing them. That means
that existing files will be overwritten without warning,.

Installing directly from an SPM file

You can also install SPM packages using a local SPM file using the spm local +install command:

spm local install /srv/spm/apache-201506-1.spm

An SPM repository is not required when using spm local install.

2.13. Salt Package Manager 197

Salt Documentation, Release 2016.3.4

Pillars

If an installed package includes Pillar data, be sure to target the installed pillar to the necessary systems using the
pillar Top file.

Removing Packages

Packages may be removed after they are installed using the spm remove command.

spm remove apache

If files have been modified, they will not be removed. Empty directories will also be removed.

2.13.4 SPM Configuration
There are a number of options that are specific to SPM. They may be configured in the master configuration file,

or in SPM's own spm configuration file (normally located at /etc/salt/spm). If configured in both places, the
spm file takes precedence. In general, these values will not need to be changed from the defaults.

spm_logfile

Default: /var/log/salt/spm
Where SPM logs messages.

spm_repos_config

Default: /etc/salt/spm.repos

SPM repositories are configured with this file. There is also a directory which corresponds to it, which ends in .d.
For instance, if the filename is /etc/salt/spm. repos, the directory will be /etc/salt/spm.repos.d/

spm_cache_dir

Default: /var/cache/salt/spm

When SPM updates package repository metadata and downloads packaged, they will be placed in this directory. The
package database, normally called packages . db, also lives in this directory.

spm_db

Default: /var/cache/salt/spm/packages.db

The location and name of the package database. This database stores the names of all of the SPM packages installed
on the system, the files that belong to them, and the metadata for those files.

spm_build_dir

Default: /srv/spm
When packages are built, they will be placed in this directory.

198 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

spm_build_exclude

Default: ['.git"']

When SPM builds a package, it normally adds all files in the formula directory to the package. Files listed here will
be excluded from that package. This option requires a list to be specified.

spm_build_exclude:
- .git
- .svn

Types of Packages

SPM supports different types of formula packages. The function of each package is denoted by its name. For instance,
packages which end in —formu'la are considered to be Salt States (the most common type of formula). Packages
which end in —conf contain configuration which is to be placed in the /etc/salt/ directory. Packages which
do not contain one of these names are treated as if they have a —formula name.

formula
By default, most files from this type of package live in the /srv/spm/salt/ directory. The exception is the

pillar.example file, which will be renamed to <package_name>.sls and placed in the pillar directory
(/srv/spm/pillar/ by default).

reactor

By default, files from this type of package live in the /srv/spm/reactor/ directory.

conf
The files in this type of package are configuration files for Salt, which normally live in the /etc/sa'lt/ directory.

Configuration files for packages other than Salt can and should be handled with a Salt State (using a formula type
of package).

2.13.5 FORMULA File

In addition to the formula itself, a FORMULA file must exist which describes the package. An example of this file is:

name: apache

os: RedHat, Debian, Ubuntu, Suse, FreeBSD
os_family: RedHat, Debian, Suse, FreeBSD
version: 201506

release: 2

summary: Formula for 1installing Apache
description: Formula for installing Apache

Required Fields

This file must contain at least the following fields:

2.13. Salt Package Manager 199

Salt Documentation, Release 2016.3.4

name

The name of the package, as it will appear in the package filename, in the repository metadata, and the package
database. Even if the source formula has ~formula in its name, this name should probably not include that. For
instance, when packaging the apache-formula, the name should be set to apache.

os

The value of the 0s grain that this formula supports. This is used to help users know which operating systems can
support this package.

os_family

The value of the os_family grain that this formula supports. This is used to help users know which operating
system families can support this package.

version

The version of the package. While it is up to the organization that manages this package, it is suggested that this
version is specified in a YYYYMM format. For instance, if this version was released in June 2015, the package version
should be 201506. If multiple releases are made in a month, the release field should be used.

minimum_version

Minimum recommended version of Salt to use this formula. Not currently enforced.

release

This field refers primarily to a release of a version, but also to multiple versions within a month. In general, if a
version has been made public, and immediate updates need to be made to it, this field should also be updated.

summary

A one-line description of the package.

description

A more detailed description of the package which can contain more than one line.

Optional Fields

The following fields may also be present.

200 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

top_level_dir

This field is optional, but highly recommended. If it is not specified, the package name will be used.

Formula repositories typically do not store .ss files in the root of the repository; instead they are stored in a
subdirectory. For instance, an apache-formula repository would contain a directory called apache, which
would contain an init.sls, plus a number of other related files. In this instance, the top_level_d1ir should
be set to apache.

Files outside the top_Tlevel_d1ir, such as README.rst, FORMULA, and LICENSE will not be installed. The
exceptions to this rule are files that are already treated specially, such as pillar.example and _modules/.

recommended

A list of optional packages that are recommended to be installed with the package. This list is displayed in an
informational message when the package is installed to SPM.

Building a Package

Once a FORMULA file has been created, it is placed into the root of the formula that is to be turned into a package.
The spm build command is used to turn that formula into a package:

spm build /path/to/saltstack-formulas/apache-formula

The resulting file will be placed in the build directory. By default this directory is located at /srv/spm/.

Loader Modules

When an execution module is placed in <file_roots>/_modules/ on the master, it will automatically be
synced to minions, the next time a sync operation takes place. Other modules are also propagated this way: state
modules can be placed in _states/, and so on.

When SPM detects a file in a package which resides in one of these directories, that directory will be placed in
<file_roots> instead of in the formula directory with the rest of the files.

Removing Packages

Packages may be removed once they are installed using the spm remove command.

spm remove apache

If files have been modified, they will not be removed. Empty directories will also be removed.

Technical Information

Packages are built using BZ2-compressed tarballs. By default, the package database is stored using the sqlite3
driver (see Loader Modules below).

Support for these are built into Python, and so no external dependencies are needed.

All other files belonging to SPM use YAML, for portability and ease of use and maintainability.

2.13. Salt Package Manager 201

Salt Documentation, Release 2016.3.4

SPM-Specific Loader Modules

SPM was designed to behave like traditional package managers, which apply files to the filesystem and store package
metadata in a local database. However, because modern infrastructures often extend beyond those use cases, certain
parts of SPM have been broken out into their own set of modules.

Package Database

By default, the package database is stored using the sql7ite3 module. This module was chosen because support
for SQLite3 is built into Python itself.

Please see the SPM Development Guide for information on creating new modules for package database management.

Package Files

By default, package files are installed using the Local module. This module applies files to the local filesystem, on
the machine that the package is installed on.

Please see the SPM Development Guide for information on creating new modules for package file management.

Types of Packages

SPM supports different types of formula packages. The function of each package is denoted by its name. For instance,
packages which end in —formu'la are considered to be Salt States (the most common type of formula). Packages
which end in —conf contain configuration which is to be placed in the /etc/salt/ directory. Packages which
do not contain one of these names are treated as if they have a —formula name.

formula

By default, most files from this type of package live in the /srv/spm/salt/ directory. The exception is the
pillar.example file, which will be renamed to <package_name>.sls and placed in the pillar directory
(/srv/spm/pillar/ by default).

reactor

By default, files from this type of package live in the /srv/spm/reactor/ directory.

conf

The files in this type of package are configuration files for Salt, which normally live in the /etc/sa'lt/ directory.
Configuration files for packages other than Salt can and should be handled with a Salt State (using a formula type
of package).

2.13.6 SPM Development Guide

This document discusses developing additional code for SPM.

202 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

SPM-Specific Loader Modules

SPM was designed to behave like traditional package managers, which apply files to the filesystem and store package
metadata in a local database. However, because modern infrastructures often extend beyond those use cases, certain
parts of SPM have been broken out into their own set of modules.

Each function that accepts arguments has a set of required and optional arguments. Take note that SPM will pass
all arguments in, and therefore each function must accept each of those arguments. However, arguments that are
marked as required are crucial to SPM's core functionality, while arguments that are marked as optional are provided
as a benefit to the module, if it needs to use them.

Package Database

By default, the package database is stored using the sqlite3 module. This module was chosen because support
for SQLite3 is built into Python itself.

Modules for managing the package database are stored in the salt/spm/pkgdb/ directory. A number of functions
must exist to support database management.

init()

Get a database connection, and initialize the package database if necessary.

This function accepts no arguments. If a database is used which supports a connection object, then that connection
object is returned. For instance, the sql1ite3 module returns a connect () object from the sqlite3 library:

conn = sqlite3.connect(__opts__['spm_db'], disolation_level=None)

return conn

SPM itself will not use this connection object; it will be passed in as-is to the other functions in the module. Therefore,
when you set up this object, make sure to do so in a way that is easily usable throughout the module.

info()

Return information for a package. This generally consists of the information that is stored in the FORMULA file in
the package.

The arguments that are passed in, in order, are package (required) and conn (optional).

package is the name of the package, as specified in the FORMULA. conn is the connection object returned from
init().

list_files()

Return a list of files for an installed package. Only the filename should be returned, and no other information.
The arguments that are passed in, in order, are package (required) and conn (optional).

package is the name of the package, as specified in the FORMULA. conn is the connection object returned from
init().

2.13. Salt Package Manager 203

Salt Documentation, Release 2016.3.4

register_pkg()

Register a package in the package database. Nothing is expected to be returned from this function.
The arguments that are passed in, in order, are name (required), formula_def (required), and conn (optional).

name is the name of the package, as specified in the FORMULA. formula_def is the contents of the FORMULA
file, as a dict. conn is the connection object returned from init ().

register_file()

Register a file in the package database. Nothing is expected to be returned from this function.

The arguments that are passed in are name (required), member (required), path (required), digest (optional),
and conn (optional).

name is the name of the package.

member is a tarfile object for the package file. It is included, because it contains most of the information for the
file.

path is the location of the file on the local filesystem.
digest is the SHA1 checksum of the file.

conn is the connection object returned from init ().

unregister_pkg()

Unregister a package from the package database. This usually only involves removing the package's record from the
database. Nothing is expected to be returned from this function.

The arguments that are passed in, in order, are name (required) and conn (optional).

name is the name of the package, as specified in the FORMULA. conn is the connection object returned from
init().

unregister_file()

Unregister a package from the package database. This usually only involves removing the package's record from the
database. Nothing is expected to be returned from this function.

The arguments that are passed in, in order, are name (required), pkg (optional) and conn (optional).
name is the path of the file, as it was installed on the filesystem.
pkg is the name of the package that the file belongs to.

conn is the connection object returned from init ().

db_exists()

Check to see whether the package database already exists. This is the path to the package database file. This function
will return True or False.

The only argument that is expected is db_, which is the package database file.

204 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

Package Files

By default, package files are installed using the Local module. This module applies files to the local filesystem, on
the machine that the package is installed on.

Modules for managing the package database are stored in the salt/spm/pkgfiles/ directory. A number of
functions must exist to support file management.

init()

Initialize the installation location for the package files. Normally these will be directory paths, but other external
destinations such as databases can be used. For this reason, this function will return a connection object, which can
be a database object. However, in the default Local module, this object is a dict containing the paths. This object
will be passed into all other functions.

Three directories are used for the destinations: formula_path, pillar_path, and reactor_path.

formula_path is the location of most of the files that will be installed. The default is specific to the operating
system, but is normally /srv/salt/.

pillar_path is the location that the pillar.example file will be installed to. The default is specific to the
operating system, but is normally /srv/pillar/.

reactor_path is the location that reactor files will be installed to. The default is specific to the operating system,
but is normally /srv/reactor/.

check_existing()

Check the filesystem for existing files. All files for the package will be checked, and if any are existing, then this
function will normally state that SPM will refuse to install the package.

This function returns a list of the files that exist on the system.

The arguments that are passed into this function are, in order: package (required), pkg_f1iles (required), for-
mula_def (formula_def), and conn (optional).

package is the name of the package that is to be installed.
pkg_files is alist of the files to be checked.
formula_def is a copy of the information that is stored in the FORMULA file.

conn is the file connection object.

install_file()

Install a single file to the destination (normally on the filesystem). Nothing is expected to be returned from this
function.

This function returns the final location that the file was installed to.

The arguments that are passed into this function are, in order, package (required), formula_tar (required),
member (required), formula_def (required), and conn (optional).

package is the name of the package that is to be installed.

formula_tar is the tarfile object for the package. This is passed in so that the function can call for-
mula_tar.extract () for the file.

2.13. Salt Package Manager 205

Salt Documentation, Release 2016.3.4

member is the tarfile object which represents the individual file. This may be modified as necessary, before being
passed into formula_tar.extract().

formula_def is a copy of the information from the FORMULA file.

conn is the file connection object.

remove_file()

Remove a single file from file system. Normally this will be little more than an os . remove (). Nothing is expected
to be returned from this function.

The arguments that are passed into this function are, in order, path (required) and conn (optional).
path is the absolute path to the file to be removed.

conn is the file connection object.

hash_file()

Returns the hexdigest hash value of a file.

The arguments that are passed into this function are, in order, path (required), hashobj (required), and conn
(optional).

path is the absolute path to the file.
hashobj is a reference to hashlib.shal (), which is used to pull the hexdigest () for the file.
conn is the file connection object.

This function will not generally be more complex than:

def hash_file(path, hashobj, conn=None):
with salt.utils.fopen(path, 'r') as f:
hashobj.update(f.read())
return hashobj.hexdigest()

path_exists()

Check to see whether the file already exists on the filesystem. Returns True or False.

This function expects a path argument, which is the absolute path to the file to be checked.

path_isdir()

Check to see whether the path specified is a directory. Returns True or False.

This function expects a path argument, which is the absolute path to be checked.

2.14 Storing Data in Other Databases

The SDB interface is designed to store and retrieve data that, unlike pillars and grains, is not necessarily minion-
specific. The initial design goal was to allow passwords to be stored in a secure database, such as one managed by

206 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

the keyring package, rather than as plain-text files. However, as a generic database interface, it could conceptually
be used for a number of other purposes.

SDB was added to Salt in version 2014.7.0.

2.14.1 SDB Configuration

In order to use the SDB interface, a configuration profile must be set up in either the master or minion configuration
file. The configuration stanza includes the name/ID that the profile will be referred to as, a driver setting, and any
other arguments that are necessary for the SDB module that will be used. For instance, a profile called mykeyring,
which uses the system service in the keyring module would look like:

mykeyring:
driver: keyring
service: system

It is recommended to keep the name of the profile simple, as it is used in the SDB URI as well.

2.14.2 SDB URIs

SDB is designed to make small database queries (hence the name, SDB) using a compact URL. This allows users to
reference a database value quickly inside a number of Salt configuration areas, without a lot of overhead. The basic
format of an SDB URI is:

sdb://<profile>/<args>

The profile refers to the configuration profile defined in either the master or the minion configuration file. The args
are specific to the module referred to in the profile, but will typically only need to refer to the key of a key/value
pair inside the database. This is because the profile itself should define as many other parameters as possible.

For example, a profile might be set up to reference credentials for a specific OpenStack account. The profile might
look like:

kevinopenstack:
driver: keyring
service: salt.cloud.openstack.kevin

And the URI used to reference the password might look like:

sdb://kevinopenstack/password

2.14.3 Getting and Setting SDB Values

Once an SDB driver is configured, you can use the sdb execution module to set and get values from it. There are
two functions that will appear in any SDB module: set and get.

Getting a value requires only the SDB URI to be specified. To retrieve a value from the kevinopenstack profile
above, you would use:

salt-call sdb.get sdb://kevinopenstack/password

Some drivers use slightly more complex URIs. For instance, the vault driver requires the full path to where the
key is stored, followed by a question mark, followed by the key to be retrieved. If you were using a profile called
myvault, you would use a URI that looks like:

2.14. Storing Data in Other Databases 207

Salt Documentation, Release 2016.3.4

’salt—call sdb.get 'sdb://myvault/secret/salt?saltstack’

Setting a value uses the same URI as would be used to retrieve it, followed by the value as another argument. For
the above myvault URI, you would set a new value using a command like:

lsalt—call sdb.set 'sdb://myvault/secret/salt?saltstack' 'super awesome'

The sdb.get and sdb. set functions are also available in the runner system:

salt-run sdb.get 'sdb://myvault/secret/salt?saltstack!
salt-run sdb.set 'sdb://myvault/secret/salt?saltstack' 'super awesome'

2.14.4 Using SDB URIs in Files

SDB URIs can be used in both configuration files, and files that are processed by the renderer system (jinja, mako,
etc.). In a configuration file (such as /etc/salt/master, /etc/salt/minion, /etc/salt/cloud, etc.),
make an entry as usual, and set the value to the SDB URI. For instance:

’ mykey: sdb://myetcd/mykey

To retrieve this value using a module, the module in question must use the config.get function to retrieve
configuration values. This would look something like:

’ mykey = __salt__['config.get']('mykey")

Templating renderers use a similar construct. To get the mykey value from above in Jinja, you would use:

’{{ salt['config.get'] ('mykey') }}

When retrieving data from configuration files using config. get, the SDB URI need only appear in the configu-
ration file itself.

If you would like to retrieve a key directly from SDB, you would call the sdb . get function directly, using the SDB
URL For instance, in Jinja:

{{ salt['sdb.get']('sdb://myetcd/mykey') }}

When writing Salt modules, it is not recommended to call sdb . get directly, as it requires the user to provide values
in SDB, using a specific URL Use config. get instead.

2.14.5 Writing SDB Modules

There is currently one function that MUST exist in any SDB module (get ()) and one that SHOULD exist (set_()).
If using a (set_()) function, a __func_alias__ dictionary MUST be declared in the module as well:

__func_alias__ = {
'set_': 'set',

}

This is because set is a Python built-in, and therefore functions should not be created which are called set (). The
__func_alias__ functionality is provided via Salt's loader interfaces, and allows legally-named functions to be
referred to using names that would otherwise be unwise to use.

The get () function is required, as it will be called via functions in other areas of the code which make use of the
sdb: // URL For example, the conf-ig. get function in the config execution module uses this function.

208 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

The set_ () function may be provided, but is not required, as some sources may be read-only, or may be otherwise
unwise to access via a URI (for instance, because of SQL injection attacks).

A simple example of an SDB module is salt/sdb/keyring_db. py, as it provides basic examples of most, if not
all, of the types of functionality that are available not only for SDB modules, but for Salt modules in general.

2.15 Running the Salt Master/Minion as an Unprivileged User

While the default setup runs the master and minion as the root user, some may consider it an extra measure of
security to run the master as a non-root user. Keep in mind that doing so does not change the master's capability
to access minions as the user they are running as. Due to this many feel that running the master as a non-root user
does not grant any real security advantage which is why the master has remained as root by default.

Note: Some of Salt's operations cannot execute correctly when the master is not running as root, specifically the
pam external auth system, as this system needs root access to check authentication.

As of Salt 0.9.10 it is possible to run Salt as a non-root user. This can be done by setting the user parameter in the
master configuration file. and restarting the salt-master service.

The minion has it's own user parameter as well, but running the minion as an unprivileged user will keep it from
making changes to things like users, installed packages, etc. unless access controls (sudo, etc.) are setup on the
minion to permit the non-root user to make the needed changes.

In order to allow Salt to successfully run as a non-root user, ownership, and permissions need to be set such that the
desired user can read from and write to the following directories (and their subdirectories, where applicable):

« Jetc/salt

« /var/cache/salt
« /var/log/salt

« /var/run/salt

Ownership can be easily changed with chown, like so:

chown -R user /Jetc/salt /var/cache/salt /var/log/salt /var/run/salt

Warning: Running either the master or minion with the root_d1ir parameter specified will affect these paths,
as will setting options like pki_d1ir, cachedir, log_f1ile, and other options that normally live in the above
directories.

2.16 Using cron with Salt

The Salt Minion can initiate its own highstate using the salt-call command.

$ salt-call state.apply

This will cause the minion to check in with the master and ensure it is in the correct *“state".

2.15. Running the Salt Master/Minion as an Unprivileged User 209

Salt Documentation, Release 2016.3.4

2.17 Use cron to initiate a highstate

If you would like the Salt Minion to regularly check in with the master you can use cron to run the salt-call
command:

0 0 * x * salt-call state.apply

The above cron entry will run a highstate every day at midnight.

Note: When executing Salt using cron, keep in mind that the default PATH for cron may not include the path for
any scripts or commands used by Salt, and it may be necessary to set the PATH accordingly in the crontab:

PATH=/bin:/sbin: /usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin:/opt/bin

0 0 x x x salt-call state.apply

2.18 Hardening Salt

This topic contains tips you can use to secure and harden your Salt environment. How you best secure and harden
your Salt environment depends heavily on how you use Salt, where you use Salt, how your team is structured, where
you get data from, and what kinds of access (internal and external) you require.

2.18.1 General hardening tips

« Restrict who can directly log into your Salt master system.
« Use SSH keys secured with a passphrase to gain access to the Salt master system.

« Track and secure SSH keys and any other login credentials you and your team need to gain access to the Salt
master system.

« Use a hardened bastion server or a VPN to restrict direct access to the Salt master from the internet.
« Don't expose the Salt master any more than what is required.

« Harden the system as you would with any high-priority target.

+ Keep the system patched and up-to-date.

« Use tight firewall rules.

2.18.2 Salt hardening tips
« Subscribe to salt-users or salt-announce so you know when new Salt releases are available. Keep your systems
up-to-date with the latest patches.
« Use Salt's Client ACL system to avoid having to give out root access in order to run Salt commands.
« Use Salt's Client ACL system to restrict which users can run what commands.

« Use external Pillar to pull data into Salt from external sources so that non-sysadmins (other teams, junior
admins, developers, etc) can provide configuration data without needing access to the Salt master.

210 Chapter 2. Configuring Salt

https://groups.google.com/forum/#!forum/salt-users
https://groups.google.com/forum/#!forum/salt-announce

Salt Documentation, Release 2016.3.4

Make heavy use of SLS files that are version-controlled and go through a peer-review/code-review process
before they're deployed and run in production. This is good advice even for * " one-oftf" CLI commands because
it helps mitigate typos and mistakes.

Use salt-api, SSL, and restrict authentication with the external auth system if you need to expose your Salt
master to external services.

Make use of Salt's event system and reactor to allow minions to signal the Salt master without requiring direct

access.

« Run the salt-master daemon as non-root.

« Disable which modules are loaded onto minions with the disable_modules setting. (for example, disable

the cmd module if it makes sense in your environment.)

+ Look through the fully-commented sample master and minion config files. There are many options for securing

an installation.

« Run masterless-mode minions on particularly sensitive minions. There is also Salt SSH or the modules. sudo

if you need to further restrict a minion.

2.19 Security disclosure policy

email security@saltstack.com

gpg key ID 4EA0793D

gpg key fingerprint 8ABE 4EFC FOF4 B24B FF2A AF90 D570 F2D3 4EA0 793D

gpg public key:

Version: GnuPG/MacGPG2 v2.0.22 (Darwin)

mQINBFO15mMBEADa3CfQwk5EDOWAQ8fFDku277CegG3UlhVGdcxgKNvucbhblwoKCb
hRK6u9i1hga09Vv9oduV2glwgjytiBI/z61lyWqdaD37YXG/gTL+9Md+qdSDeala/9eg
7y+g4P+FvU9HWUlujRV1ofUn5D] /IZgUywbxwEybutuzvvFVTzsn+DFVwTH34Qoh
QIuNzQCSEz3Lhh8zq9LqkNy9177ZQ01ZIUrypafspH6GBHHCE8msBFgYiNBnVcUFH
udr4j1Rav+621EtD5GZs0t05+NII8pkaC/dDKjURcuiV6ebhmeSpNzLaXUhwx6f29
Vhag5JhVGGNQXx LRTXNEM86GHEFp+4zJQ8m/wRDrGX5IAHsSdESdhP+1jDV1AAX/ttP
/Uc12fgpTnDKVHOAGOE515Q87ZHv6awl3GL1veqi8zfsLaag7rwlTuuHyGLOPKDt
t5PAjsS9R3KI7pGnhqI6bT015910dUdgzUhZChWUUX1VStiIDi2jCvyoO0LMOGSS5
AEYXuWYP7KgujZCDRaTNgRDdgPd93Mh9JI8UmkzXDUgijdzVpzPjYgFaWtyK81lsc
Fizqe3/Yzf9RCVX/ImRbiEH+ql/zSxcW1lBQd17PKaL+TisQFXcmQzccYgAxFbj2r
QHp5ABEU9YjFme2Jzun7MvoV4qo3JF5dmnUk31yupZeAOGZkirIsaWC3hwARAQAB
tDBTYWXxOU3RhY2sgU2VjdXJIpdHkgVGVhbSA8c2VjdXJIpdHTAC2FsdHNOYWNrLmNv
bT6JAj4EEWECACgFA1015mMCGWMFCQeGH4AGCWkIBWMCBhUIAgkKCwQWAgMBAh4B
AheAAAOJENVW8tNOOHK9Zz/MP/2vzY27fmVxU5X8joiiturjlgEqQw41IYEmWy1Bw
4WVXYCHP1yu/1MC1luuvOmOd5B1I8Y02C20yW7d1BONorguPtz55b7jabCElekVCh
h/H4ZVThiwggPpthRv/2npXjIm7SLSs/kuaXo6Qy2IpszwDVFw+xCRVLOtHOKIxz
HuNBeVq7abWD5fzIWkmGM9OhicG/R2DORITcol1QOVNKY8klG+pOFOW886KNwkSPc7
JUYploUTHSS1hTmkLEG54cyVzrTP/XuZuyMTdtyTc3mfgWoadneAL6MARtC5UB/h
gq+v9dqMf4iD3wY6ctu8KWES8Vo5MUESNNO9EA2dUR88LWFZ3ZnnXdQkizgR/Aa515
dml17vINkSoomYCo84eN7GOTfxWcqg+iXYSWCKWT4X+h/ra+LmNndQWQBRebVUtbKE
ZDwKmiQz/5LY5EhIWcuU41VmMSFpWXt5FR/PtzgTdZA0o9QKkBjcv97LYbXvsPI69
E11BLAg+m+1UpE1L7zJT1i16PqVyEFAWBXxW46wXCCkGssFsvz2yRpOPDX8A6u4yq
rTkt®9uYhtlis61joLDI/kq3+6k8gIWkDOW+2NMrmf+/qcdYCMYXmrtOpg/wF27W
GMNAkbdyzgeX /MbUBCGCMdzhevRuiv0I5bu4vT5s3KdshG+yhzV45bapKRA5VN+1
mZRquQINBFO15mMBEAC5UuLii9ZLz6gHfIIp35I0WOU8SOf7QFhzXR7NZ3DmJsd3

2.19. Security disclosure policy

211

mailto:security@saltstack.com

Salt Documentation, Release 2016.3.4

f6Nb/habQFIHjm3K9wbpj+FvaW2oWR1FVvYdzjUq6c82GUUjWldnggUvFwdmM835
1n0YQ2TonmyaF882RvsRZrbJ65uvy7SQxlouXaAYOdqwLsPxBEOyOnMPSktW5V2U
IWyxsNP3sADchWIGq9p5D3Y/loyIMsS1dj+Tj0QZ0KS]7CuRT98+8yhGAYS8YBEXu
9r3I906mDkuPpAljuMc8r09Imbaz2egtK/szKt4Hy1lbpSSBZU4W/XR7XwQNywmb3
wxjmYT60d3Mwj0jtzc3gQiH8hcEy3+BO+NNmyzFVyIwOLziwjmEcw62S57wYKUVNn
HD2ng1MsQa8Ve@e6ABBMEY7zGEGStva59rfgeh0jUMIiccGiUDTMsOtdkCe6knYKb
u/fdRgNYFoNuDcSeLEw4DdCuP@112W4yY+fiK6hAcL25amjzc+yYo9eaaqTn6RAT
bzdhHQZdpAMxY+VNTO+NhP1Zo5gYBMR65Zp /VhFsf67ijbO3FUtdwON8dHwWiR2m8
VVA8KO/gCD6wWS2p9RdXqrI9IhnHYW] i VuXR+f755ZAndyQfRtowMdQIoi XuJEXYw
6XN+/BX81gJaynJYcOuwOMnxWQX+A5m8HqEsbIFUXBYXPgbwXTm7c4IHGgXXdwAR
AQABiQI1BBgBAgAPBQJITteZjAhsMBQkHhh+AAA0JENVW8tNOOoHk91rcQAIhxLv4g
duF/J1CyfeWixz4rqs1BQ7DgNztdIUMjCThg3eB6pvIzY5d3DNROmwUSIVGP1rEw
hNiJhgBDFaB0J/y28uSci+orhKDTHb/cn30IxfuAuqrv9dujvmlgM7IUswOtLZhs
5FYGa6v1RORRWhUx2PQsF60Rg22QAaagc701a03BXBoiE/FWsnEQCUsc7GnnPqi7
um45031/pIntsBUKviVvEU20fj7]j1UpjmeWz56NcjXoKtEvGh99gM5W2nSMLE3aPw
vcKhS4yRyLjO0el9NfYbtID8mM80oshUDji0XjQ1lz5NdGcf2V1YNGHUSxyK6zwyGxgV
xZqaWnbhDTulUnYBna8BiUobkuqclb4T9k2WjbrUSmTwKixokCO1irFDZvqISkgmN
r6/g3w2TRi11/LtbUciFOFN2pd7rj5mWrOBPEFYJImrB6SQeswWNhr5RIsXrQd/Ho
zvNmOHNUNEe6w5YBfA6sXQy8B0Zs6pcglogkFB15TUHIIIpxIsVRv5z8S1ENBTHQ
I09hZT58yjhekJuzVQB91loUOC/WOlzci/pXTt6fd9puYQelDG37pSifRGE6kTHXIR
iféenRyrfdTlawgbqdkoqFDmEybAM9 /hv3BqriGahGGH/hgpINQbYoXfNwYMYaHuB
aSkJvroQw8bpuAzgVyd7TyNFv+tlkL1lfaRYJ

=wBTJ

The SaltStack Security Team is available at security@saltstack.com for security-related bug reports or questions.

We request the disclosure of any security-related bugs or issues be reported non-publicly until such time as the issue
can be resolved and a security-fix release can be prepared. At that time we will release the fix and make a public
announcement with upgrade instructions and download locations.

2.19.1 Security response procedure
SaltStack takes security and the trust of our customers and users very seriously. Our disclosure policy is intended
to resolve security issues as quickly and safely as is possible.

1. A security report sent to security@saltstack.com is assigned to a team member. This person is the primary
contact for questions and will coordinate the fix, release, and announcement.

2. The reported issue is reproduced and confirmed. A list of affected projects and releases is made.

3. Fixes are implemented for all affected projects and releases that are actively supported. Back-ports of the fix
are made to any old releases that are actively supported.

4. Packagers are notified via the salt-packagers mailing list that an issue was reported and resolved, and that an
announcement is incoming,.

5. A new release is created and pushed to all affected repositories. The release documentation provides a full
description of the issue, plus any upgrade instructions or other relevant details.

6. An announcement is made to the salt-users and salt-announce mailing lists. The announcement contains a
description of the issue and a link to the full release documentation and download locations.

2.19.2 Receiving security announcements

The fastest place to receive security announcements is via the salt-announce mailing list. This list is low-traffic.

212 Chapter 2. Configuring Salt

mailto:security@saltstack.com
mailto:security@saltstack.com
https://groups.google.com/forum/#!forum/salt-packagers
https://groups.google.com/forum/#!forum/salt-users
https://groups.google.com/forum/#!forum/salt-announce
https://groups.google.com/forum/#!forum/salt-announce

Salt Documentation, Release 2016.3.4

2.20 Salt Transport

One of fundamental features of Salt is remote execution. Salt has two basic " “channels" for communicating with
minions. Each channel requires a client (minion) and a server (master) implementation to work within Salt. These
pairs of channels will work together to implement the specific message passing required by the channel interface.

2.20.1 Pub Channel

The pub channel, or publish channel, is how a master sends a job (payload) to a minion. This is a basic pub/sub
paradigm, which has specific targeting semantics. All data which goes across the publish system should be encrypted
such that only members of the Salt cluster can decrypt the publishes.

2.20.2 Req Channel

The req channel is how the minions send data to the master. This interface is primarily used for fetching files and
returning job returns. The req channels have two basic interfaces when talking to the master. send is the basic
method that guarantees the message is encrypted at least so that only minions attached to the same master can read
it-- but no guarantee of minion-master confidentiality, whereas the crypted_transfer_decode_dictentry
method does guarantee minion-master confidentiality.

Zeromgq Transport

Note: Zeromgq is the current default transport within Salt

Zeromgq is a messaging library with bindings into many languages. Zeromq implements a socket interface for mes-
sage passing, with specific semantics for the socket type.

Pub Channel

The pub channel is implemented using zeromq's pub/sub sockets. By default we don't use zeromq's filtering, which
means that all publish jobs are sent to all minions and filtered minion side. Zeromq does have publisher side filtering
which can be enabled in salt using zmq_filtering.

Req Channel

The req channel is implemented using zeromq's req/rep sockets. These sockets enforce a send/recv pattern, which
forces salt to serialize messages through these socket pairs. This means that although the interface is asynchronous
on the minion we cannot send a second message until we have received the reply of the first message.

TCP Transport

The tcp transport is an implementation of Salt's channels using raw tcp sockets. Since this isn't using a pre-defined
messaging library we will describe the wire protocol, message semantics, etc. in this document.

The tcp transport is enabled by changing the transport setting to tcp on each Salt minion and Salt master.

2.20. Salt Transport 213

Salt Documentation, Release 2016.3.4

transport: tcp

Wire Protocol

This implementation over TCP focuses on flexibility over absolute efficiency. This means we are okay to spend a
couple of bytes of wire space for flexibility in the future. That being said, the wire framing is quite efficient and looks

like:

msgpack ({'head': SOMEHEADER, 'body': SOMEBODY})

Since msgpack is an iterably parsed serialization, we can simply write the serialized payload to the wire. Within
that payload we have two items " “head" and ""body". Head contains header information (such as " message id").
The Body contains the actual message that we are sending. With this flexible wire protocol we can implement any
message semantics that we'd like-- including multiplexed message passing on a single socket.

Crypto

The current implementation uses the same crypto as the zeromq transport.

Pub Channel

For the pub channel we send messages without " “message ids" which the remote end interprets as a one-way send.

Note: As of today we send all publishes to all minions and rely on minion-side filtering.

Req Channel

For the req channel we send messages with a * message id". This " message id" allows us to multiplex messages
across the socket.

The RAET Transport

Note: The RAET transport is in very early development, it is functional but no promises are yet made as to its
reliability or security. As for reliability and security, the encryption used has been audited and our tests show that
raet is reliable. With this said we are still conducting more security audits and pushing the reliability. This document
outlines the encryption used in RAET

New in version 2014.7.0.

The Reliable Asynchronous Event Transport, or RAET, is an alternative transport medium developed specifically
with Salt in mind. It has been developed to allow queuing to happen up on the application layer and comes with
socket layer encryption. It also abstracts a great deal of control over the socket layer and makes it easy to bubble up
errors and exceptions.

RAET also offers very powerful message routing capabilities, allowing for messages to be routed between processes
on a single machine all the way up to processes on multiple machines. Messages can also be restricted, allowing
processes to be sent messages of specific types from specific sources allowing for trust to be established.

214 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

Using RAET in Salt

Using RAET in Salt is easy, the main difference is that the core dependencies change, instead of needing pycrypto,
M2Crypto, ZeroMQ, and PYZMQ, the packages libsodium, libnacl, ioflo, and raet are required. Encryption is handled
very cleanly by libnacl, while the queueing and flow control is handled by ioflo. Distribution packages are forth-
coming, but libsodium can be easily installed from source, or many distributions do ship packages for it. The libnacl
and ioflo packages can be easily installed from pypi, distribution packages are in the works.

Once the new deps are installed the 2014.7 release or higher of Salt needs to be installed.
Once installed, modify the configuration files for the minion and master to set the transport to raet:

/etc/salt/master:

’ transport: raet

/etc/salt/minion:

’ transport: raet

Now start salt as it would normally be started, the minion will connect to the master and share long term keys, which
can then in turn be managed via salt-key. Remote execution and salt states will function in the same way as with
Salt over ZeroMQ.

Limitations

The 2014.7 release of RAET is not complete! The Syndic and Multi Master have not been completed yet and these
are slated for completion in the 2015.5.0 release.

Also, Salt-Raet allows for more control over the client but these hooks have not been implemented yet, thereforre
the client still uses the same system as the ZeroMQ client. This means that the extra reliability that RAET exposes
has not yet been implemented in the CLI client.

Why?
Customer and User Request

Why make an alternative transport for Salt? There are many reasons, but the primary motivation came from cus-
tomer requests, many large companies came with requests to run Salt over an alternative transport, the reasoning
was varied, from performance and scaling improvements to licensing concerns. These customers have partnered
with SaltStack to make RAET a reality.

More Capabilities

RAET has been designed to allow salt to have greater communication capabilities. It has been designed to allow for
development into features which out ZeroMQ topologies can't match.

Many of the proposed features are still under development and will be announced as they enter proof of concept
phases, but these features include salt-fuse - a filesystem over salt, salt-vt - a parallel api driven shell over the salt
transport and many others.

2.20. Salt Transport 215

http://doc.libsodium.org/
http://doc.libsodium.org/

Salt Documentation, Release 2016.3.4

RAET Reliability

RAET is reliable, hence the name (Reliable Asynchronous Event Transport).

The concern posed by some over RAET reliability is based on the fact that RAET uses UDP instead of TCP and UDP
does not have built in reliability.

RAET itself implements the needed reliability layers that are not natively present in UDP, this allows RAET to
dynamically optimize packet delivery in a way that keeps it both reliable and asynchronous.

RAET and ZeroMQ

When using RAET, ZeroMQ is not required. RAET is a complete networking replacement. It is noteworthy that
RAET is not a ZeroMQ replacement in a general sense, the ZeroMQ constructs are not reproduced in RAET, but they
are instead implemented in such a way that is specific to Salt's needs.

RAET is primarily an async communication layer over truly async connections, defaulting to UDP. ZeroMQ is over
TCP and abstracts async constructs within the socket layer.

Salt is not dropping ZeroMQ support and has no immediate plans to do so.

Encryption

RAET uses Dan Bernstein's NACL encryption libraries and CurveCP handshake. The libnacl python binding binds
to both libsodium and tweetnacl to execute the underlying cryptography. This allows us to completely rely on an
externally developed cryptography system.

Programming Intro

Intro to RAET Programming

Note: This page is still under construction

The first thing to cover is that RAET does not present a socket api, it presents, and queueing api, all messages in
RAET are made available to via queues. This is the single most differentiating factor with RAET vs other networking
libraries, instead of making a socket, a stack is created. Instead of calling send() or recv(), messages are placed on
the stack to be sent and messages that are received appear on the stack.

Different kinds of stacks are also available, currently two stacks exist, the UDP stack, and the UXD stack. The
UDP stack is used to communicate over udp sockets, and the UXD stack is used to communicate over Unix Domain
Sockets.

The UDP stack runs a context for communicating over networks, while the UXD stack has contexts for communi-
cating between processes.

UDP Stack Messages

To create a UDP stack in RAET, simply create the stack, manage the queues, and process messages:

216 Chapter 2. Configuring Salt

http://curvecp.org/
http://doc.libsodium.org/

Salt Documentation, Release 2016.3.4

from salt.transport.road.raet 1import stacking
from salt.transport.road.raet 1import estating

udp_stack = stacking.StackUdp(ha=('127.0.0.1", 7870))

r_estate = estating.Estate(stack=stack, name='foo', ha=('192.168.42.42"', 7870))
msg = {'hello': 'world'}

udp_stack.transmit(msg, udp_stack.estates[r_estate.name])
udp_stack.serviceAll()

2.21 Master Tops System

In 0.10.4 the external_nodes system was upgraded to allow for modular subsystems to be used to generate the top
file data for a highstate run on the master.

The old external_nodes option has been removed. The master tops system contains a number of subsystems that are
loaded via the Salt loader interfaces like modules, states, returners, runners, etc.

Using the new master_tops option is simple:

master_tops:
ext_nodes: cobbler-external-nodes

for Cobbler or:

master_tops:
reclass:
inventory_base_uri: /etc/reclass
classes_uri: roles

for Reclass.

It's also possible to create custom master_tops modules. These modules must go in a subdirectory called tops in the
extension_modules directory. The extension_modules directory is not defined by default (the default /srv/salt/_modules
will NOT work as of this release)

Custom tops modules are written like any other execution module, see the source for the two modules above for
examples of fully functional ones. Below is a degenerate example:

/etc/salt/master:

extension_modules: /srv/salt/modules
master_tops:
customtop: True

/srv/salt/modules/tops/customtop.py:

import logging

import sys

Define the module's virtual name
__virtualname__ = 'customtop'

log = logging.getlLogger(__name__)

def __virtual__():
return __virtualname__

2.21. Master Tops System 217

Salt Documentation, Release 2016.3.4

def top(*xkwargs):
log.debug('Calling top in customtop')
return {'base': ['test']}

salt minion state.show_top should then display something like:

$ salt minion state.show_top

minion

2.22 Returners

By default the return values of the commands sent to the Salt minions are returned to the Salt master, however
anything at all can be done with the results data.

By using a Salt returner, results data can be redirected to external data-stores for analysis and archival.

Returners pull their configuration values from the Salt minions. Returners are only configured once, which is gen-
erally at load time.

The returner interface allows the return data to be sent to any system that can receive data. This means that return
data can be sent to a Redis server, a MongoDB server, a MySQL server, or any system.

See also:

Full list of builtin returners

2.22.1 Using Returners

All Salt commands will return the command data back to the master. Specifying returners will ensure that the data
is _also_ sent to the specified returner interfaces.

Specifying what returners to use is done when the command is invoked:

’salt 'x' test.ping --return redis_return

This command will ensure that the redis_return returner is used.

It is also possible to specify multiple returners:

’salt 'x' test.ping --return mongo_return,redis_return,cassandra_return

In this scenario all three returners will be called and the data from the test.ping command will be sent out to the
three named returners.

2.22.2 Writing a Returner

A returner is a Python module containing at minimum a returner function. Other optional functions can be
included to add support for master_job_cache, external_job_cache, and Event Returners.

218 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

returner The returner function must accept a single argument. The argument contains return data from the
called minion function. If the minion function test.ping is called, the value of the argument will be a
dictionary. Run the following command from a Salt master to get a sample of the dictionary:

salt-call --local --metadata test.ping --out=pprint

import redis
import json

def returner(ret):

rr

Return information to a redis server

rr

Get a redis connection

serv = redis.Redis(
host='redis-serv.example.com',

port=6379,
db='0")
serv.sadd (" :jobs" % ret, ret['jid'])
serv.set(" : " % ret, json.dumps(ret['return']))

serv.sadd('jobs', ret['jid'])
serv.sadd(ret['jid'], ret['id'])

The above example of a returner set to send the data to a Redis server serializes the data as JSON and sets it in redis.

Master Job Cache Support

master_job_cache, external_job_cache, and Event Returners. Salt's master_job_cache allows returners to be used
as a pluggable replacement for the Default Job Cache. In order to do so, a returner must implement the following
functions:

Note: The code samples contained in this section were taken from the cassandra_cql returner.

prep_jid Ensures that job ids (jid) don't collide, unless passed_jid is provided.

nochache is an optional boolean that indicates if return data should be cached. passed_jid is a caller
provided jid which should be returned unconditionally.

def prep_jid(nocache, passed_jid=None): # pylint: disable=unused-argument

rr

Do any work necessary to prepare a JID, including sending a custom id

rr

return passed_jid if passed_jid is not None else salt.utils.jid.gen_jid()

save_load Save job information. The jid is generated by prep_jid and should be considered a unique iden-
tifier for the job. The jid, for example, could be used as the primary/unique key in a database. The load is
what is returned to a Salt master by a minion. The following code example stores the load as a JSON string in
the salt.jids table.

def save_load(jid, load):

rr

Save the load to the specified jid id
query = '"''INSERT INTO salt.jids (
jid, load

2.22. Returners 219

Salt Documentation, Release 2016.3.4

) VALUES (
'{orr, {1}
); "' .format(jid, json.dumps(load))

cassandra_cql.cql_query may raise a CommandExecutionError
try:
__salt__['cassandra_cql.cql_query'](query)
except CommandExecutionError:
log.critical('Could not save load in jids table.')
raise
except Exception as e:
log.critical('''Unexpected error while inserting into
jids: {0}'"'"'.format(str(e)))
raise

get_load must accept a job id (jid) and return the job load stored by save_Tload, or an empty dictionary when
not found.

def get_load(jid):

Return the load data that marks a specified jid
query = '"''SELECT load FROM salt.jids WHERE jid = "{o}';'''.format(jid)
ret = {}

cassandra_cql.cql_query may raise a CommandExecutionError

try:
data = __salt__['cassandra_cql.cql_query'](query)
if data:
load = data[0].get('load")
if load:

ret = json.loads(load)
except CommandExecutionError:
log.critical('Could not get load from jids table.')
raise
except Exception as e:
log.critical('''Unexpected error while getting load from
jids: {0}'"'"'.format(str(e)))
raise

return ret

External Job Cache Support
Salt's external_job_cache extends the master_job_cache. External Job Cache support requires the following functions
in addition to what is required for Master Job Cache support:

get_jid Return a dictionary containing the information (load) returned by each minion when the specified job id
was executed.

Sample:

{
"local": {
"master_minion": {
"fun_args": [],

220 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

"jid": "20150330121011408195",
"return": true,

"retcode": 0,

"success'": true,

"emd": "_return",

"_stamp": "2015-03-30T12:10:12.708663",
"fun": "test.ping",

"jd": "master_minion"

get_fun Return a dictionary of minions that called a given Salt function as their last function call.

Sample:
{
"local": {
"minionl": "test.ping",
"minion3": "test.ping",
"minion2": "test.ping"
}
}

get_jids Return alist of all job ids.

Sample:
{

"local”: [
"20150330121011408195",
"20150330195922139916"

]

}

get_minions Returns a list of minions

Sample:
{

"local": [
"minion3",
"minion2",
"minionl",
"master_minion"

]

}

Please refer to one or more of the existing returners (i.e. mysql, cassandra_cql) if you need further clarification.

Event Support
An event_return function must be added to the returner module to allow events to be logged from a master via
the returner. A list of events are passed to the function by the master.

The following example was taken from the MySQL returner. In this example, each event is inserted into the
salt_events table keyed on the event tag. The tag contains the jid and therefore is guaranteed to be unique.

2.22. Returners 221

Salt Documentation, Release 2016.3.4

def event_return(events):

rr

Return event to mysql server

Requires that configuration be enabled via 'event_return'
option in master config.
rr
with _get_serv(events, commit=True) as cur:
for event in events:
tag = event.get('tag', ''")
data = event.get('data', ''")
sql = '"''INSERT INTO ‘salt_events' ('tag , ‘data’, “master_id")
VALUES (%s, %s, %s)''!
cur.execute(sql, (tag, json.dumps(data), __opts__['id']))

Custom Returners

Place custom returners in a _returners directory within the 71 le_roots specified by the master config file.
Custom returners are distributed when any of the following are called:

. state.apply

« saltutil.sync_returners

« saltutil.sync_all

Any custom returners which have been synced to a minion that are named the same as one of Salt's default set of
returners will take the place of the default returner with the same name.

Naming the Returner

Note that a returner's default name is its filename (i.e. foo.py becomes returner foo), but that its name can be
overridden by using a __virtual _ function. A good example of this can be found in the redis returner, which is
named redis_return.py but is loaded as simply redis:

try:
import redis
HAS_REDIS = True
except ImportError:
HAS_REDIS = False

__virtualname__ = 'redis'
def __virtual__():
if not HAS_REDIS:
return False
return __virtualname_

Testing the Returner

The returner, prep_jid, save_load, get_load, and event_return functions can be tested by config-
uring the master_job_cache and Event Returners in the master config file and submitting a job to test.ping each
minion from the master.

222 Chapter 2. Configuring Salt

https://github.com/saltstack/salt/tree/develop/salt/returners/redis_return.py

Salt Documentation, Release 2016.3.4

Once you have successfully exercised the Master Job Cache functions, test the External Job Cache functions using
the ret execution module.

salt-call ret.get_jids cassandra_cql --output=json

salt-call ret.get_fun cassandra_cql test.ping --output=json

salt-call ret.get_minions cassandra_cql --output=json

salt-call ret.get_jid cassandra_cql 20150330121011408195 --output=json

2.22.3 Event Returners

For maximum visibility into the history of events across a Salt infrastructure, all events seen by a salt master may
be logged to a returner.

To enable event logging, set the event_return configuration option in the master config to returner which should
be designated as the handler for event returns.

Note: Not all returners support event returns. Verify a returner has an event_return() function before using.

Note: On larger installations, many hundreds of events may be generated on a busy master every second. Be
certain to closely monitor the storage of a given returner as Salt can easily overwhelm an underpowered server with
thousands of returns.

2.22.4 Full List of Returners

returner modules

carbon_return

Take data from salt and " return" it into a carbon receiver

cassandra_cql_return

Return data to a cassandra server

cassandra_return

Return data to a Cassandra ColumnFamily

couchbase_return

Simple returner for Couchbase.

couchdb_return

Simple returner for CouchDB.

django_return

A returner that will infor a Django system that returns are
available using Django's signal system.

elasticsearch_return

Return data to an elasticsearch server for indexing.

etcd_return

Return data to an etcd server or cluster

hipchat_return

Return salt data via hipchat.

influxdb_return

Return data to an influxdb server.

kafka_return

Return data to a Kafka topic

local

The local returner is used to test the returner interface, it
just prints the

local_cache

Return data to local job cache

memcache_return

Return data to a memcache server

mongo_future_return

Return data to a mongodb server

mongo_return

Return data to a mongodb server

multi_returner

Read/Write multiple returners

mysql

Return data to a mysql server

nagios_return

Return salt data to Nagios

Continued on next page ‘

2.22. Returners

223

Salt Documentation, Release 2016.3.4

Table 2.1 -- continued from previous page

odbc Return data to an ODBC compliant server.

pgjsonb Return data to a PostgreSQL server with json data stored
in Pg's jsonb data type

postgres Return data to a postgresql server

postgres_local_cache

Use a postgresql server for the master job cache.

pushover_returner

Return salt data via pushover (http://www.pushover.net)

redis_return

Return data to a redis server

sentry_return

Salt returner that reports execution results back to sentry.

slack_returner

Return salt data via slack

sms_return

Return data by SMS.

smtp_return

Return salt data via email

sqlite3_return

Insert minion return data into a sqlite3 database

syslog_return

Return data to the host operating system's syslog facility

xmpp_return

Return salt data via xmpp

salt.returners.carbon_return

Take data from salt and " “return" it into a carbon receiver

Add the following configuration to the minion configuration file:

carbon.host: <server 1ip address>
carbon.port: 2003

Errors when trying to convert data to numbers may be ignored by setting carbon.skip_on_error to True:

’carbon.ski p_on_error: True ‘

By default, data will be sent to carbon using the plaintext protocol. To use the pickle protocol, set carbon.mode
to pickle:

’carbon.mode: pickle ‘

You can also specify the pattern used for the metric base path (except for virt modules metrics):
carbon.metric_base_pattern: carbon.[minion_id].[module].[function]

These tokens can used : [module]: salt module [function]: salt function [minion_id]: minion id
Default is : carbon.metric_base_pattern: [module].[function].[minion_id]

Carbon settings may also be configured as:

carbon:
host: <server IP or hostname>
port: <carbon port>
skip_on_error: True
mode: (pickle|text)
metric_base_pattern: <pattern> | [module].[function].[minion_id]

Alternative configuration values can be used by prefacing the configuration. Any values not found in the alternative
configuration will be pulled from the default location:

alternative.carbon:
host: <server IP or hostname>
port: <carbon port>

224 Chapter 2. Configuring Salt

http://www.pushover.net

Salt Documentation, Release 2016.3.4

skip_on_error: True
mode: (pickle|text)

To use the carbon returner, append "--return carbon' to the salt command.

’salt 'x' test.ping --return carbon

To use the alternative configuration, append "--return_config alternative' to the salt command.

New in version 2015.5.0.

’salt 'x' test.ping --return carbon --return_config alternative

To override individual configuration items, append --return_kwargs *{ "key:": *“value"} to the salt command.

New in version 2016.3.0.

’salt 'x'" test.ping --return carbon --return_kwargs '{'"skip_on_error": False}'

salt.returners.carbon_return.event_return (events)
Return event data to remote carbon server

Provide a list of events to be stored in carbon

salt.returners.carbon_return.prep_jid(nocache=False, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.carbon_return.returner (ret)
Return data to a remote carbon server using the text metric protocol

Each metric will look like:

[module]. [function].[minion_id]. [metric path [...]].[metric name]

salt.returners.cassandra_cql_return

Return data to a cassandra server

New in version 2015.5.0.
maintainer Corin Kochenower<ckochenower@saltstack.com>
maturity new as of 2015.2
depends salt.modules.cassandra_cql

depends DataStax Python Driver for Apache Cassandra https://github.com/datastax/python-driver pip
install cassandra-driver

platform all

configuration To enable this returner, the minion will need the DataStax Python Driver for Apache
Cassandra (https://github.com/datastax/python-driver) installed and the following values config-
ured in the minion or master config. The list of cluster IPs must include at least one cassandra node
IP address. No assumption or default will be used for the cluster IPs. The cluster IPs will be tried
in the order listed. The port, username, and password values shown below will be the assumed
defaults if you do not provide values.:

2.22. Returners 225

mailto:ckochenower@saltstack.com
https://github.com/datastax/python-driver
https://github.com/datastax/python-driver

Salt Documentation, Release 2016.3.4

cassandra:
cluster:
- 192.168.50.11
- 192.168.50.12
- 192.168.50.13
port: 9042
username: salt
password: salt

Use the following cassandra database schema:

CREATE KEYSPACE IF NOT EXISTS salt
—1};
CREATE USER IF NOT EXISTS salt WITH PASSWORD 'salt'
GRANT ALL ON KEYSPACE salt TO salt;
USE salt;

CREATE TABLE IF NOT EXISTS salt.salt_returns (
jid text,
minion_id text,
fun text,
alter_time timestamp,
full_ret text,
return text,
success boolean,
PRIMARY KEY (jid, minion_id, fun)
) WITH CLUSTERING ORDER BY (minion_id ASC, fun ASC);

—(minion_id);
CREATE INDEX IF NOT EXISTS salt_returns_fun ON salt.

CREATE TABLE IF NOT EXISTS salt.jids (
jid text PRIMARY KEY,
load text

)

CREATE TABLE IF NOT EXISTS salt.minions (
minion_id text PRIMARY KEY,
last_fun text

)

CREATE TABLE IF NOT EXISTS salt.salt_events (
id timeuudid,
tag text,
alter_time timestamp,
data text,
master_id text,
PRIMARY KEY (id, tag)
) WITH CLUSTERING ORDER BY (tag ASC);
CREATE INDEX tag ON salt.salt_events (tag);

WITH replication = {'class': 'SimpleStrategy', 'replication_factor' :K

CREATE INDEX IF NOT EXISTS salt_returns_minion_id ON salt.salt_returnsiX

CREATE INDEX IF NOT EXISTS minions_last_fun ON salt.minions (last_fun);

NOSUPERUSER;

salt_returns (fun);

Required python modules: cassandra-driver

226

Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

To use the cassandra returner, append “--return cassandra_cql' to the salt command. ex:

salt '+x' test.ping --return_cql cassandra

Note: if your Cassandra instance has not been tuned much you may benefit from altering some timeouts in cassan-
dra.yaml like so:

As always, your mileage may vary and your Cassandra cluster may have different needs. SaltStack has seen situations
where these timeouts can resolve some stacktraces that appear to come from the Datastax Python driver.

salt.returners.cassandra_cql_return.event_return (events)
Return event to one of potentially many clustered cassandra nodes

Requires that configuration be enabled via “event_return' option in master config.

Cassandra does not support an auto-increment feature due to the highly inefficient nature of creating a mono-
tonically increasing number across all nodes in a distributed database. Each event will be assigned a uuid by
the connecting client.

salt.returners.cassandra_cql_return.get_fun(fun)
Return a dict of the last function called for all minions

salt.returners.cassandra_cql_return.get_jid(jid)
Return the information returned when the specified job id was executed

salt.returners.cassandra_cql_return.get_jids()
Return a list of all job ids

salt.returners.cassandra_cql_return.get_load (jid)
Return the load data that marks a specified jid

salt.returners.cassandra_cql_return.get_minions()
Return a list of minions

salt.returners.cassandra_cql_return.prep_jid (nocache, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.cassandra_cql_return.returner (ret)
Return data to one of potentially many clustered cassandra nodes

salt.returners.cassandra_cql_return.save_load (jid, load, minions=None)
Save the load to the specified jid id

salt.returners.cassandra_return

Return data to a Cassandra ColumnFamily

Here's an example Keyspace / ColumnFamily setup that works with this returner:

create keyspace salt;
use salt;
create column family returns
with key_validation_class='UTF8Type'
and comparator="'UTF8Type'
and default_validation_class='UTF8Type';

Required python modules: pycassa
To use the cassandra returner, append "--return cassandra’ to the salt command. ex:

salt **' test.ping --return cassandra

2.22. Returners 227

Salt Documentation, Release 2016.3.4

salt.returners.cassandra_return.prep_jid (nocache=False, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.cassandra_return.returner (ret)
Return data to a Cassandra ColumnFamily

salt.returners.couchbase_return

Simple returner for Couchbase. Optional configuration settings are listed below, along with sane defaults.
couchbase host: “salt' couchbase.port: 8091 couchbase.bucket: “salt' couchbase.skip_verify_views: False
To use the couchbase returner, append "--return couchbase' to the salt command. ex:
salt **' test.ping --return couchbase

All of the return data will be stored in documents as follows:

JID

load: load obj tgt_minions: list of minions targeted nocache: should we not cache the return data

JID/MINION_ID

return: return_data out: out_data

salt.returners.couchbase_return.get_jid(jid)
Return the information returned when the specified job id was executed

salt.returners.couchbase_return.get_jids()
Return a list of all job ids

salt.returners.couchbase_return.get_load (jid)
Return the load data that marks a specified jid

salt.returners.couchbase_return.prep_jid (nocache=False, passed_jid=None)
Return a job id and prepare the job id directory This is the function responsible for making sure jids don't
collide (unless its passed a jid) So do what you have to do to make sure that stays the case

salt.returners.couchbase_return.returner (load)
Return data to the local job cache

salt.returners.couchbase_return.save_load (jid, clear_load, minion=None)
Save the load to the specified jid

salt.returners.couchbase_return.save_minions (jid, minions, syndic_id=None)
Save/update the minion list for a given jid. The syndic_id argument is included for API compatibility only.

salt.returners.couchdb_return

Simple returner for CouchDB. Optional configuration settings are listed below, along with sane defaults:

couchdb.db: 'salt'
couchdb.url: 'http://salt:5984/'

228 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

Alternative configuration values can be used by prefacing the configuration. Any values not found in the alternative
configuration will be pulled from the default location:

alternative.couchdb.db: 'salt'
alternative.couchdb.url: 'http://salt:5984/"'

To use the couchdb returner, append --return couchdb to the salt command. Example:

’salt 'x' test.ping —-return couchdb

To use the alternative configuration, append —-return_config alternatiive to the salt command.

New in version 2015.5.0.

’salt 'x' test.ping --return couchdb --return_config alternative

To override individual configuration items, append --return_kwargs {" ‘key:": *“value"}' to the salt command.

New in version 2016.3.0.

’salt 'x' test.ping --return couchdb --return_kwargs '{"db": "another-salt"}'

On concurrent database access

As this returner creates a couchdb document with the salt job id as document id and as only one document with
a given id can exist in a given couchdb database, it is advised for most setups that every minion be configured to
write to it own database (the value of couchdb.db may be suffixed with the minion id), otherwise multi-minion
targeting can lead to losing output:

« the first returning minion is able to create a document in the database
« other minions fail with {"error': 'HTTP Error 409: Conflict'}

salt.returners.couchdb_return.ensure_views()
This function makes sure that all the views that should exist in the design document do exist.

salt.returners.couchdb_return.get_fun(fun)
Return a dict with key being minion and value being the job details of the last run of function “fun"

salt.returners.couchdb_return.get_jid(jid)
Get the document with a given JID.

salt.returners.couchdb_return.get_jids()
List all the jobs that we have..

salt.returners.couchdb_return.get_minions()
Return a list of minion identifiers from a request of the view.

salt.returners.couchdb_return.get_valid_salt_views()
Returns a dict object of views that should be part of the salt design document.

salt.returners.couchdb_return.prep_jid (nocache=False, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.couchdb_return.returner (ret)
Take in the return and shove it into the couchdb database.

salt.returners.couchdb_return.set_salt_view()
Helper function that sets the salt design document. Uses get_valid_salt_views and some hardcoded values.

2.22. Returners 229

Salt Documentation, Release 2016.3.4

salt.returners.django_return

A returner that will infor a Django system that returns are available using Django's signal system.
https://docs.djangoproject.com/en/dev/topics/signals/

It is up to the Django developer to register necessary handlers with the signals provided by this returner and process
returns as necessary.

The easiest way to use signals is to import them from this returner directly and then use a decorator to register them.

An example Django module that registers a function called "returner_callback' with this module's “returner' function:

import salt.returners.django_return
from django.dispatch import receiver

@receiver(salt.returners.django_return, sender=returner)
def returner_callback(sender, ret):
print('I received {0} from {1}'.format(ret, sender))

salt.returners.django_return.prep_jid(nocache=False, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom ID

salt.returners.django_return.returner (ret)
Signal a Django server that a return is available

salt.returners.django_return.save_load (jid, load, minions=None)
Save the load to the specified jid

salt.returners.elasticsearch_return

Return data to an elasticsearch server for indexing.

maintainer Jurnell = Cockhren <jurnell.cockhren@sophicware.com=>, Arnold Bechtoldt
<mail@arnoldbechtoldt.com>

maturity New
depends elasticsearch-py
platform all
To enable this returner the elasticsearch python client must be installed on the desired minions (all or some subset).

Please see documentation of elasticsearch execution module for a valid connection configuration.

Warning: The index that you wish to store documents will be created by Elasticsearch automatically if doesn't
exist yet. It is highly recommended to create predefined index templates with appropriate mapping(s) that will
be used by Elasticsearch upon index creation. Otherwise you will have problems as described in #20826.

To use the returner per salt call:

’salt 'x' test.ping --return elasticsearch

In order to have the returner apply to all minions:

’ ext_job_cache: elasticsearch

230 Chapter 2. Configuring Salt

https://docs.djangoproject.com/en/dev/topics/signals/
mailto:jurnell.cockhren@sophicware.com
mailto:mail@arnoldbechtoldt.com
http://elasticsearch-py.readthedocs.org/en/latest/

Salt Documentation, Release 2016.3.4

salt.returners.elasticsearch_return.get_load (jid)
Return the load data that marks a specified jid

New in version 2015.8.1.

salt.returners.elasticsearch_return.prep_jid(nocache=False, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.elasticsearch_return.returner (ret)
Process the return from Salt

salt.returners.elasticsearch_return.save_load (jid, load, minions=None)
Save the load to the specified jid id

New in version 2015.8.1.

salt.returners.etcd_return

Return data to an etcd server or cluster
depends
« python-etcd

In order to return to an etcd server, a profile should be created in the master configuration file:

my_etcd_config:
etcd.host: 127.0.0.1
etcd.port: 4001

It is technically possible to configure etcd without using a profile, but this is not considered to be a best practice,
especially when multiple etcd servers or clusters are available.

etcd.host: 127.0.0.1
etcd.port: 4001

Additionally, two more options must be specified in the top-level configuration in order to use the etcd returner:

etcd.returner: my_etcd_config
etcd.returner_root: /salt/return

The etcd. returner option specifies which configuration profile to use. The etcd.returner_root option
specifies the path inside etcd to use as the root of the returner system.

Once the etcd options are configured, the returner may be used:
CLI Example:
salt **' test.ping --return etcd

A username and password can be set:

etcd.username: larry # Optional; requires etcd.password to be set
etcd.password: 123pass # Optional; requires etcd.username to be set

You can also set a TTL (time to live) value for the returner:

etcd.ttl: 5

2.22. Returners 231

Salt Documentation, Release 2016.3.4

Authentication with username and password, and ttl, currently requires the master branch of python-etcd.

You may also specify different roles for read and write operations. First, create the profiles as specified above. Then
add:

etcd.returner_read_profile: my_etcd_read
etcd.returner_write_profile: my_etcd_write

salt.returners.etcd_return.get_fun()
Return a dict of the last function called for all minions

salt.returners.etcd_return.get_jid(jid)
Return the information returned when the specified job id was executed

salt.returners.etcd_return.get_jids()
Return a list of all job ids

salt.returners.etcd_return.get_load (jid)
Return the load data that marks a specified jid

salt.returners.etcd_return.get_minions()
Return a list of minions

salt.returners.etcd_return.prep_jid(nocache=False, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.etcd_return.returner (ret)
Return data to an eted server or cluster

salt.returners.etcd_return.save_load (jid, load, minions=None)
Save the load to the specified jid

salt.returners.hipchat_return

Return salt data via hipchat.
New in version 2015.5.0.

The following fields can be set in the minion conf file:

hipchat.room_id (required)
hipchat.api_key (required)
hipchat.api_version (required)
hipchat.from_name (required)
hipchat.color (optional)
hipchat.notify (optional)
hipchat.profile (optional)
hipchat.url (optional)

Note: When using Hipchat's API v2, api_key needs to be assigned to the room with the " "Label" set to what you
would have been set in the hipchat.from_name field. The v2 API disregards the from_name in the data sent for the
room notification and uses the Label assigned through the Hipchat control panel.

Alternative configuration values can be used by prefacing the configuration. Any values not found in the alternative
configuration will be pulled from the default location:

232 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

hipchat.room_id
hipchat.api_key
hipchat.api_version
hipchat.from_name

Hipchat settings may also be configured as:

hipchat:
room_1id: RoomName
api_key: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
api_version: vl
from_name: user@email.com

alternative.hipchat:
room_id: RoomName
api_key: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
api_version: vl
from_name: user@email.com

hipchat_profile:
hipchat.api_key: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
hipchat.api_version: vl
hipchat.from_name: user@email.com

hipchat:
profile: hipchat_profile
room_id: RoomName

alternative.hipchat:
profile: hipchat_profile
room_id: RoomName

hipchat:
room_id: RoomName
api_key: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
api_version: vl
api_url: api.hipchat.com
from_name: user@email.com

To use the HipChat returner, append "--return hipchat' to the salt command.

’salt 'x' test.ping —-return hipchat

To use the alternative configuration, append "--return_config alternative' to the salt command.

New in version 2015.5.0.

’salt 'x' test.ping --return hipchat --return_config alternative

To override individual configuration items, append --return_kwargs {" ‘key:": *“value"}' to the salt command.

New in version 2016.3.0.

’salt 'x' test.ping --return hipchat --return_kwargs '{"room_id": "another-room"}'

salt.returners.hipchat_return.event_return (events)
Return event data to hipchat

2.22. Returners 233

Salt Documentation, Release 2016.3.4

salt.returners.hipchat_return.returner (ret)
Send an hipchat message with the return data from a job

salt.returners.influxdb_return

Return data to an influxdb server.

New in version 2015.8.0.

To enable this returner the minion will need the python client for influxdb installed and the following values con-
figured in the minion or master config, these are the defaults:

influxdb.db:
influxdb.user: 'salt'
influxdb.password:
influxdb.host:
influxdb.port: 8086

'salt'

'salt!
'localhost'

Alternative configuration values can be used by prefacing the configuration. Any values not found in the alternative
configuration will be pulled from the default location:

alternative
alternative
alternative
alternative
alternative

.influxdb.
.influxdb.
.influxdb.
.influxdb.
.influxdb.

db: 'salt'

user: 'salt'
password: 'salt'
host: 'localhost'
port: 6379

To use the influxdb returner, append "--return influxdb' to the salt command.

’salt 'x' test.ping --return influxdb

To use the alternative configuration, append "--return_config alternative' to the salt command.

’salt "x' test.ping --return influxdb --return_config alternative

To override individual configuration items, append --return_kwargs {" ‘key:": *“value"}' to the salt command.

New in version 2016.3.0.

’salt 'x' test.ping --return influxdb --return_kwargs '{"db'": "another-salt"}'

salt.returners.influxdb_return.get_fun(fun)
Return a dict of the last function called for all minions

salt.returners.influxdb_return.get_jid(jid)
Return the information returned when the specified job id was executed

salt.returners.influxdb_return.get_jids()
Return a list of all job ids

salt.returners.influxdb_return.get_load (jid)
Return the load data that marks a specified jid

salt.returners.influxdb_return.get_minions()
Return a list of minions

salt.returners.influxdb_return.prep_jid (nocache=False, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

234

Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

salt.returners.influxdb_return.returner (ret)
Return data to a influxdb data store

salt.returners.influxdb_return.save_load (jid, load, minions=None)
Save the load to the specified jid

salt.returners.kafka_return

Return data to a Kafka topic
maintainer Christer Edwards (christer.edwards@gmail.com)
maturity 0.1
depends kafka-python
platform all
To enable this returner install katka-python and enable the following settings in the minion config:

returner kafka.hostnames:

. “‘serverl"
. “server2"
. “server3"

returner.kafka.topic: “topic'
To use the kafka returner, append "--return kafka' to the Salt command, eg;
salt "™ test.ping --return kaftka

salt.returners.kafka_return.returner (ret)
Return information to a Kafka server

salt.returners.local

The local returner is used to test the returner interface, it just prints the return data to the console to verify that it is
being passed properly

To use the local returner, append “--return local' to the salt command. ex:
salt **' test.ping --return local

salt.returners.local.event_return (event)
Print event return data to the terminal to verify functionality

salt.returners.local.returner (ret)
Print the return data to the terminal to verify functionality

salt.returners.local_cache

Return data to local job cache

salt.returners.local_cache.clean_old_jobs ()
Clean out the old jobs from the job cache

2.22. Returners 235

mailto:christer.edwards@gmail.com

Salt Documentation, Release 2016.3.4

salt.returners.local_cache.get_endtime (jid)
Retrieve the stored endtime for a given job

Returns False if no endtime is present

salt.returners.local_cache.get_jid(jid)
Return the information returned when the specified job id was executed

salt.returners.local_cache.get_jids()
Return a dict mapping all job ids to job information

salt.returners.local_cache.get_jids_filter (count, filter_find job=True)
Return a list of all jobs information filtered by the given criteria. :param int count: show not more than the
count of most recent jobs :param bool filter_find_jobs: filter out “saltutil.find_job' jobs

salt.returners.local_cache.get_load (jid)
Return the load data that marks a specified jid

salt.returners.local_cache.prep_jid(nocache=False, passed_jid=None, recurse_count=0)
Return a job id and prepare the job id directory.

This is the function responsible for making sure jids don't collide (unless it is passed a jid). So do what you
have to do to make sure that stays the case

salt.returners.local_cache.returner (load)
Return data to the local job cache

salt.returners.local_cache.save_load (jid, clear load, minions=None, recurse_count=0)
Save the load to the specified jid

minions argument is to provide a pre-computed list of matched minions for the job, for cases when this function
can't compute that list itself (such as for salt-ssh)

salt.returners.local_cache.save_minions (jid, minions, syndic_id=None)
Save/update the serialized list of minions for a given job

salt.returners.local_cache.update_endtime (jid, time)
Update (or store) the end time for a given job

Endtime is stored as a plain text string

salt.returners.memcache_return

Return data to a memcache server

To enable this returner the minion will need the python client for memcache installed and the following values
configured in the minion or master config, these are the defaults.

memcache.host: 'localhost'
memcache.port: '11211'

Alternative configuration values can be used by prefacing the configuration. Any values not found in the alternative
configuration will be pulled from the default location.

alternative.memcache.host: 'localhost'
alternative.memcache.port: '11211'

python2-memcache uses ‘localhost' and "11211" as syntax on connection.

To use the memcache returner, append "--return memcache' to the salt command.

236 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

’salt '"x' test.ping --return memcache

To use the alternative configuration, append "--return_config alternative' to the salt command.

New in version 2015.5.0.

’salt 'x' test.ping --return memcache --return_config alternative

To override individual configuration items, append --return_kwargs *{ "key:": *“value"} to the salt command.

New in version 2016.3.0.

’salt "x' test.ping --return memcache --return_kwargs '{'"host": "hostname.domain.com"}'

salt.returners.memcache_return.get_fun(fun)
Return a dict of the last function called for all minions

salt.returners.memcache_return.get_jid(jid)
Return the information returned when the specified job id was executed

salt.returners.memcache_return.get_jids()
Return a list of all job ids

salt.returners.memcache_return.get_load (jid)
Return the load data that marks a specified jid

salt.returners.memcache_return.get_minions()
Return a list of minions

salt.returners.memcache_return.prep_jid (nocache=False, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.memcache_return.returner (ret)
Return data to a memcache data store

salt.returners.memcache_return.save_load (jid, load, minions=None)
Save the load to the specified jid

salt.returners.mongo_future_return

Return data to a mongodb server

Required python modules: pymongo

This returner will send data from the minions to a MongoDB server. To configure the settings for your MongoDB

server, add the following lines to the minion config files:

mongo.db: <database name>

mongo.host: <server 1ip address>
mongo.user: <MongoDB username>
mongo.password: <MongoDB user password>
mongo.port: 27017

You can also ask for indexes creation on the most common used fields, which should greatly improve performance.

Indexes are not created by default.

mongo.indexes: true

2.22. Returners

237

Salt Documentation, Release 2016.3.4

Alternative configuration values can be used by prefacing the configuration. Any values not found in the alternative
configuration will be pulled from the default location:

alternative.mongo.db: <database name>
alternative.mongo.host: <server ip address>
alternative.mongo.user: <MongoDB username>
alternative.mongo.password: <MongoDB user password>
alternative.mongo.port: 27017

This mongo returner is being developed to replace the default mongodb returner in the future and should not be
considered API stable yet.

To use the mongo returner, append "--return mongo' to the salt command.

’salt 'x' test.ping --return mongo

To use the alternative configuration, append "--return_config alternative' to the salt command.

New in version 2015.5.0.

’salt 'x' test.ping —--return mongo --return_config alternative

To override individual configuration items, append --return_kwargs *{ "key:": *“value"} to the salt command.

New in version 2016.3.0.

’salt 'x' test.ping —--return mongo —--return_kwargs '{"db": "another-salt"}'

salt.returners.mongo_future_return.get_fun(fun)
Return the most recent jobs that have executed the named function

salt.returners.mongo_future_return.get_jid(jid)
Return the return information associated with a jid

salt.returners.mongo_future_return.get_jids()
Return a list of job ids

salt.returners.mongo_future_return.get_load (jid)
Return the load associated with a given job id

salt.returners.mongo_future_return.get_minions()
Return a list of minions

salt.returners.mongo_future_return.prep_jid(nocache=False, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.mongo_future_return.returner (ret)
Return data to a mongodb server

salt.returners.mongo_future_return.save_load (jid, load, minions=None)
Save the load for a given job id

salt.returners.mongo_return

Return data to a mongodb server
Required python modules: pymongo

This returner will send data from the minions to a MongoDB server. To configure the settings for your MongoDB
server, add the following lines to the minion config files.

238 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

mongo.db: <database name>

mongo.host: <server 1ip address>
mongo.user: <MongoDB username>
mongo.password: <MongoDB user password>
mongo.port: 27017

Alternative configuration values can be used by prefacing the configuration. Any values not found in the alternative
configuration will be pulled from the default location.

alternative.mongo.db: <database name>
alternative.mongo.host: <server ip address>
alternative.mongo.user: <MongoDB username>
alternative.mongo.password: <MongoDB user password>
alternative.mongo.port: 27017

To use the mongo returner, append "--return mongo' to the salt command.

’salt '"x' test.ping --return mongo_return

To use the alternative configuration, append "--return_config alternative' to the salt command.

New in version 2015.5.0.

’salt 'x' test.ping --return mongo_return --return_config alternative

To override individual configuration items, append --return_kwargs *{ "key:": *“value"} to the salt command.

New in version 2016.3.0.

’salt 'x' test.ping --return mongo --return_kwargs '{"db": "another-salt"}'

To override individual configuration items, append --return_kwargs {" ‘key:": *“value"}' to the salt command.

New in version 2016.3.0.

’salt 'x' test.ping --return mongo --return_kwargs '{"db": "another-salt"}'

salt.returners.mongo_return.get_fun(fun)
Return the most recent jobs that have executed the named function

salt.returners.mongo_return.get_jid(jid)
Return the return information associated with a jid

salt.returners.mongo_return.prep_jid (nocache=False, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.mongo_return.returner (ret)
Return data to a mongodb server

salt.returners.multi_returner

Read/Write multiple returners

salt.returners.multi_returner.clean_old_jobs()
Clean out the old jobs from all returners (if you have it)

salt.returners.multi_returner.get_jid(jid)
Merge the return data from all returners

2.22. Returners 239

Salt Documentation, Release 2016.3.4

salt.returners.multi_returner.get_jids()
Return all job data from all returners

salt.returners.multi_returner.get_load (jid)
Merge the load data from all returners

salt.returners.multi_returner.prep_jid(nocache=False, passed_jid=None)
Call both with prep_jid on all returners in multi_returner

TODO: finish this, what do do when you get different jids from 2 returners... since our jids are time based, this
make this problem hard, because they aren't unique, meaning that we have to make sure that no one else got
the jid and if they did we spin to get a new one, which means " "locking" the jid in 2 returners is non-trivial

salt.returners.multi_returner.returner (load)
Write return to all returners in multi_returner

salt.returners.multi_returner.save_load (jid, clear load, minions=None)
Write load to all returners in multi_returner

salt.returners.mysql

Return data to a mysql server
maintainer Dave Boucha <dave@saltstack.com>, Seth House <shouse@saltstack.com>
maturity new
depends python-mysqldb
platform all

To enable this returner, the minion will need the python client for mysql installed and the following values configured
in the minion or master config. These are the defaults:

mysql.host: 'salt'
mysql.user: 'salt'
mysql.pass: 'salt'
mysql.db: 'salt'
mysql.port: 3306

SSL is optional. The defaults are set to None. If you do not want to use SSL, either exclude these options or set them
to None.

mysql.ssl_ca: None
mysql.ssl_cert: None
mysql.ssl_key: None

Alternative configuration values can be used by prefacing the configuration with alternative.. Any values not found in
the alternative configuration will be pulled from the default location. As stated above, SSL configuration is optional.
The following ssl options are simply for illustration purposes:

alternative.mysql.host: 'salt'

alternative.mysql.user: 'salt'

alternative.mysql.pass: 'salt'

alternative.mysql.db: 'salt'

alternative.mysql.port: 3306

alternative.mysql.ssl_ca: '/etc/pki/mysql/certs/localhost.pem'
alternative.mysql.ssl_cert: '/etc/pki/mysql/certs/localhost.crt'
alternative.mysql.ssl_key: '/etc/pki/mysql/certs/localhost.key'

240 Chapter 2. Configuring Salt

mailto:dave@saltstack.com
mailto:shouse@saltstack.com

Salt Documentation, Release 2016.3.4

Use the following mysql database schema:

CREATE DATABASE ‘'salt’
DEFAULT CHARACTER SET utfS8
DEFAULT COLLATE utf8_general_ci;

USE “salt’;

-- Table structure for table ‘jids"

DROP TABLE IF EXISTS "jids';
CREATE TABLE "jids™ (
"jid® varchar(255) NOT NULL,
"load” mediumtext NOT NULL,
UNIQUE KEY ‘jid’ (' jid")
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
CREATE INDEX jid ON jids(jid) USING BTREE;

-— Table structure for table ‘salt_returns’

DROP TABLE IF EXISTS "salt_returns ;
CREATE TABLE “salt_returns’ (
“fun® varchar(50) NOT NULL,
"jid® varchar(255) NOT NULL,
"return’ mediumtext NOT NULL,
"id® varchar(255) NOT NULL,
"success’ varchar(10) NOT NULL,
“full_ret’ mediumtext NOT NULL,
“alter_time® TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
KEY ‘4id’ ('id’),
KEY "jid" (' jid’),
KEY “fun' (" fun’)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

-— Table structure for table ‘salt_events'

DROP TABLE IF EXISTS "salt_events ;

CREATE TABLE “salt_events (

“id° BIGINT NOT NULL AUTO_INCREMENT,

“tag® varchar(255) NOT NULL,

"data’ mediumtext NOT NULL,

“alter_time® TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
‘master_id’ varchar(255) NOT NULL,

PRIMARY KEY (1id’),

KEY “tag™ (tag’)

) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Required python modules: MySQLdb

To use the mysql returner, append "--return mysql' to the salt command.

salt 'x' test.ping --return mysql

2.22. Returners

241

Salt Documentation, Release 2016.3.4

To use the alternative configuration, append *--return_config alternative' to the salt command.

New in version 2015.5.0.

’salt 'x' test.ping —--return mysql --return_config alternative

To override individual configuration items, append --return_kwargs *{ “key:": *“value"} to the salt command.

New in version 2016.3.0.

’salt 'x' test.ping —--return mysql --return_kwargs '{"db": "another-salt"}'

salt.returners.mysql.event_return(events)
Return event to mysql server

Requires that configuration be enabled via “event_return' option in master config.

salt.returners.mysql.get_fun(fun)
Return a dict of the last function called for all minions

salt.returners.mysql.get_jid(jid)
Return the information returned when the specified job id was executed

salt.returners.mysql.get_jids()
Return a list of all job ids

salt.returners.mysql.get_jids_filter (count, filter find_job=True)
Return a list of all job ids :param int count: show not more than the count of most recent jobs :param bool
filter_find_jobs: filter out saltutil.find_job' jobs

salt.returners.mysql.get_load (jid)
Return the load data that marks a specified jid

salt.returners.mysql.get_minions()
Return a list of minions

salt.returners.mysql.prep_jid (nocache=False, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.mysql.returner (ret)
Return data to a mysql server

salt.returners.mysql.save_load (jid, load, minions=None)
Save the load to the specified jid id

salt.returners.nagios_return

Return salt data to Nagios

The following fields can be set in the minion conf file:

nagios.url (required)
nagios.token (required)
nagios.service (optional)
nagios.check_type (optional)

Alternative configuration values can be used by prefacing the configuration. Any values not found in the alternative
configuration will be pulled from the default location:

242 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

nagios.url
nagios.token
nagios.service

Nagios settings may also be configured as:

nagios:
url: http://localhost/nrdp
token: r4ndOmtOk3n
service: service-check

alternative.nagios:
url: http://localhost/nrdp
token: r4ndOmtok3n
service: another-service-check
To use the Nagios returner, append '--return nagios' to the salt command. ex:
code-block:: bash

salt 'x' test.ping --return nagios

To use the alternative configuration, append '--return_config alternative' to the salti
—~command. ex:

salt 'x' test.ping --return nagios --return_config alternative

To override individual configuration items, append --return_kwargs *{ "key:": *“value"} to the salt command.

New in version 2016.3.0.

salt 'x' test.ping --return nagios --return_kwargs '{"service": "service-name'"}'

salt.returners.nagios_return.returner (ret)
Send a message to Nagios with the data

salt.returners.odbc

Return data to an ODBC compliant server. This driver was developed with Microsoft SQL Server in mind, but
theoretically could be used to return data to any compliant ODBC database as long as there is a working ODBC
driver for it on your minion platform.

maintainer
3. (a) Oldham (cr@saltstack.com)
maturity New
depends unixodbc, pyodbc, freetds (for SQL Server)
platform all
To enable this returner the minion will need
On Linux:

unixodbc (http://www.unixodbc.org) pyodbe (pip install pyodbc) The FreeTDS ODBC driver for SQL
Server (http://www.freetds.org) or another compatible ODBC driver

On Windows:

2.22. Returners 243

mailto:cr@saltstack.com
http://www.unixodbc.org
http://www.freetds.org

Salt Documentation, Release 2016.3.4

TBD
unixODBC and FreeTDS need to be configured via /etc/odbcinst.ini and /etc/odbc.ini.

/etc/odbcinst.ini:

[TDS]
Description=TDS
Driver=/usr/lib/x86_64-1inux-gnu/odbc/1libtdsodbc.so

(Note the above Driver line needs to point to the location of the FreeTDS shared library. This example is for Ubuntu
14.04.)

/etc/odbec.ini:

[Ts]

Description = "Salt Returner"”
Driver=TDS

Server = <your server ‘ip or fqdn>
Port = 1433

Database = salt

Trace = No

Also you need the following values configured in the minion or master config. Configure as you see fit:

returner.odbc.dsn: 'TS'
returner.odbc.user: 'salt'
returner.odbc.passwd: 'salt'

Alternative configuration values can be used by prefacing the configuration. Any values not found in the alternative
configuration will be pulled from the default location:

alternative.returner.odbc.dsn: 'TS'
alternative.returner.odbc.user: 'salt!'
alternative.returner.odbc.passwd: 'salt'

Running the following commands against Microsoft SQL Server in the desired database as the appropriate user
should create the database tables correctly. Replace with equivalent SQL for other ODBC-compliant servers

-- Table structure for table 'jids'

if OBJECT_ID('dbo.jids', 'U') is not null
DROP TABLE dbo.jids

CREATE TABLE dbo.jids (
jid varchar(255) PRIMARY KEY,
load varchar(MAX) NOT NULL

)3

-- Table structure for table 'salt_returns'

IF OBJECT_ID('dbo.salt_returns', 'U') IS NOT NULL
DROP TABLE dbo.salt_returns;

CREATE TABLE dbo.salt_returns (
added datetime not null default (getdate()),

244 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

fun varchar(100) NOT NULL,
jid varchar(255) NOT NULL,
retval varchar (MAX) NOT NULL,
id varchar(255) NOT NULL,

success bit default(0) NOT NULL,
full_ret varchar (MAX)

)3
CREATE INDEX salt_returns_added on dbo.salt_returns(added);
CREATE INDEX salt_returns_id on dbo.salt_returns(id);
CREATE INDEX salt_returns_jid on dbo.salt_returns(jid);
CREATE INDEX salt_returns_fun on dbo.salt_returns(fun);
To use this returner, append '--return odbc' to the salt command.
. code-block:: bash

salt 'x' status.diskusage --return odbc

To use the alternative configuration, append '--return_config alternative' to the saltl
—command.

. versionadded:: 2015.5.0
. code-block:: bash

salt 'x' test.ping --return odbc --return_config alternative

To override individual configuration items, append --return_kwargs *{ "key:": *“value"}' to the salt command.

New in version 2016.3.0.

salt '+x' test.ping --return odbc --return_kwargs '{"dsn": "dsn-name"}'

salt.returners.odbc.get_fun(fun)
Return a dict of the last function called for all minions

salt.returners.odbc.get_jid(jid)
Return the information returned when the specified job id was executed

salt.returners.odbc.get_jids()
Return a list of all job ids

salt.returners.odbc.get_load (jid)
Return the load data that marks a specified jid

salt.returners.odbc.get_minions()
Return a list of minions

salt.returners.odbc.prep_jid(nocache=False, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.odbc.returner (ret)
Return data to an odbc server

salt.returners.odbc.save_load (jid, load, minions=None)
Save the load to the specified jid id

2.22. Returners 245

Salt Documentation, Release 2016.3.4

salt.returners.pgjsonb

Return data to a PostgreSQL server with json data stored in Pg's jsonb data type

maintainer Dave Boucha <dave@saltstack.com>, Seth House <shouse@saltstack.com>, C. R. Oldham
<cr@saltstack.com>

maturity new
depends python-psycopg2
platform all

To enable this returner, the minion will need the python client for PostgreSQL installed and the following values
configured in the minion or master config. These are the defaults:

returner.pgjsonb.host: 'salt'
returner.pgjsonb.user: 'salt'
returner.pgjsonb.pass: 'salt'
returner.pgjsonb.db: 'salt'
returner.pgjsonb.port: 5432

SSL is optional. The defaults are set to None. If you do not want to use SSL, either exclude these options or set them
to None.

returner.pgjsonb.ssl_ca: None
returner.pgjsonb.ssl_cert: None
returner.pgjsonb.ssl_key: None

Alternative configuration values can be used by prefacing the configuration with alternative.. Any values not found in
the alternative configuration will be pulled from the default location. As stated above, SSL configuration is optional.
The following ssl options are simply for illustration purposes:

alternative.pgjsonb.host: 'salt'

alternative.pgjsonb.user: 'salt'

alternative.pgjsonb.pass: 'salt'

alternative.pgjsonb.db: 'salt'

alternative.pgjsonb.port: 5432

alternative.pgjsonb.ssl_ca: '/etc/pki/mysql/certs/localhost.pem'
alternative.pgjsonb.ssl_cert: '/etc/pki/mysql/certs/localhost.crt'
alternative.pgjsonb.ssl_key: '/etc/pki/mysql/certs/localhost.key'

Use the following Pg database schema:

CREATE DATABASE salt
WITH ENCODING 'utf-8';

-- Table structure for table ‘jids"
DROP TABLE IF EXISTS jids;
CREATE TABLE jids (
jid varchar(255) NOT NULL primary key,
load jsonb NOT NULL
)3
CREATE INDEX idx_jids_jsonb on jids
USING gin (load)
WITH (fastupdate=on);

246 Chapter 2. Configuring Salt

mailto:dave@saltstack.com
mailto:shouse@saltstack.com
mailto:cr@saltstack.com

Salt Documentation, Release 2016.3.4

-— Table structure for table ‘salt_returns’

DROP TABLE IF EXISTS salt_returns;
CREATE TABLE salt_returns (
fun varchar(50) NOT NULL,
jid varchar(255) NOT NULL,
return jsonb NOT NULL,
id varchar(255) NOT NULL,
success varchar(10) NOT NULL,
full_ret jsonb NOT NULL,
alter_time TIMESTAMP WITH TIME ZONE DEFAULT NOW());

CREATE INDEX 1idx_salt_returns_id ON salt_returns (id);

CREATE INDEX idx_salt_returns_jid ON salt_returns (jid);

CREATE INDEX 1idx_salt_returns_fun ON salt_returns (fun);

CREATE INDEX idx_salt_returns_return ON salt_returns
USING gin (return) with (fastupdate=on);

CREATE INDEX -idx_salt_returns_full_ret ON salt_returns
USING gin (full_ret) with (fastupdate=on);

-— Table structure for table ‘salt_events'

DROP TABLE IF EXISTS salt_events;
DROP SEQUENCE IF EXISTS seq_salt_events_id;
CREATE SEQUENCE seq_salt_events_1id;
CREATE TABLE salt_events (
id BIGINT NOT NULL UNIQUE DEFAULT nextval('seq_salt_events_id'),
tag varchar(255) NOT NULL,
data jsonb NOT NULL,
alter_time TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
master_id varchar(255) NOT NULL);

CREATE INDEX idx_salt_events_tag on
salt_events (tag);

CREATE INDEX idx_salt_events_data ON salt_events
USING gin (data) with (fastupdate=on);

Required python modules: Psycopg2

To use this returner, append "--return pgjsonb' to the salt command.

’salt 'x' test.ping --return pgjsonb

To use the alternative configuration, append "--return_config alternative' to the salt command.

New in version 2015.5.0.

’salt 'x' test.ping --return pgjsonb --return_config alternative

To override individual configuration items, append --return_kwargs *{ "key:": *“value"}' to the salt command.

New in version 2016.3.0.

’salt 'x' test.ping --return pgjsonb --return_kwargs '{"db": "another-salt"}'

2.22. Returners 247

Salt Documentation, Release 2016.3.4

salt.returners.pgjsonb.event_return (events)
Return event to Pg server

Requires that configuration be enabled via “event_return' option in master config.

salt.returners.pgjsonb.get_fun(fun)
Return a dict of the last function called for all minions

salt.returners.pgjsonb.get_jid(jid)
Return the information returned when the specified job id was executed

salt.returners.pgjsonb.get_jids()
Return a list of all job ids

salt.returners.pgjsonb.get_load (jid)
Return the load data that marks a specified jid

salt.returners.pgjsonb.get_minions()
Return a list of minions

salt.returners.pgjsonb.prep_jid (nocache=False, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.pgjsonb.returner (ret)
Return data to a Pg server

salt.returners.pgjsonb.save_load (jid, load, minions=None)
Save the load to the specified jid id

salt.returners.postgres

Return data to a postgresql server

Note: returners.postgres_local_cache is recommended instead of this module when using PostgreSQL
as a master job cache. These two modules provide different functionality so you should compare each to see which
module best suits your particular needs.

maintainer None
maturity New
depends psycopg?
platform all

To enable this returner the minion will need the psycopg2 installed and the following values configured in the minion
or master config:

returner.postgres.host: 'salt'
returner.postgres.user: 'salt'
returner.postgres.passwd: 'salt'
returner.postgres.db: 'salt'
returner.postgres.port: 5432

Alternative configuration values can be used by prefacing the configuration. Any values not found in the alternative
configuration will be pulled from the default location:

248 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

alternative.
alternative.
alternative.
alternative.
alternative.

returner.postgres.
returner.postgres.
returner.postgres.
returner.postgres.
returner.postgres.

host: 'salt'
user: 'salt'
passwd: 'salt'
db: 'salt'
port: 5432

Running the following commands as the postgres user should create the database correctly:

psql << EOF

EOF

)

added
fun

jid
return
id
success

)

EOF

-- Table structure for table

-- Table structure for table

CREATE INDEX ON
CREATE INDEX ON
CREATE INDEX ON
CREATE INDEX ON

DROP TABLE IF EXISTS jids;
CREATE TABLE jids (
jid varchar(20) PRIMARY KEY,
load text NOT NULL

!

CREATE ROLE salt WITH PASSWORD 'salt';
CREATE DATABASE salt WITH OWNER salt;

psql -h localhost -U salt << EOF

'jids’

salt_returns'

DROP TABLE IF EXISTS salt_returns;
CREATE TABLE salt_returns (

TIMESTAMP WITH TIME ZONE DEFAULT now(),

text NOT NULL,

varchar(20) NOT NULL,

text NOT NULL,
text NOT NULL,
boolean

salt_returns (added);
salt_returns (id);
salt_returns (jid);
salt_returns (fun);

Required python modules: psycopg2

To use the postgres returner, append “--return postgres' to the salt command.

’salt 'x' test.ping --return postgres

To use the alternative configuration, append "--return_config alternative' to the salt command.

New in version 2015.5.0.

’salt 'x' test.ping --return postgres --return_config alternative

To override individual configuration items, append --return_kwargs '{" "key:": *“value"}' to the salt command.

New in version 2016.3.0.

2.22. Returners

249

Salt Documentation, Release 2016.3.4

salt '+x' test.ping --return postgres --return_kwargs '{"db": "another-salt"}'

salt.returners.postgres.get_fun(fun)
Return a dict of the last function called for all minions

salt.returners.postgres.get_jid(jid)
Return the information returned when the specified job id was executed

salt.returners.postgres.get_jids()
Return a list of all job ids

salt.returners.postgres.get_load (jid)
Return the load data that marks a specified jid

salt.returners.postgres.get_minions()
Return a list of minions

salt.returners.postgres.prep_jid (nocache=False, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.postgres.returner (ret)
Return data to a postgres server

salt.returners.postgres.save_load (jid, load, minions=None)
Save the load to the specified jid id

salt.returners.postgres_local_cache

Use a postgresql server for the master job cache. This helps the job cache to cope with scale.

Note: returners.postgres is also available if you are not using PostgreSQL as a master job cache. These two
modules provide different functionality so you should compare each to see which module best suits your particular
needs.

maintainer gjredelinghuys@gmail.com
maturity New

depends psycopg2

platform all

To enable this returner the minion will need the psycopg?2 installed and the following values configured in the master
config:

master_job_cache: postgres_local_cache
master_job_cache.postgres.host: 'salt'
master_job_cache.postgres.user: 'salt'
master_job_cache.postgres.passwd: 'salt'
master_job_cache.postgres.db: 'salt'
master_job_cache.postgres.port: 5432

Running the following command as the postgres user should create the database correctly:

psql << EOF

CREATE ROLE salt WITH PASSWORD 'salt';
CREATE DATABASE salt WITH OWNER salt;
EOF

250 Chapter 2. Configuring Salt

mailto:gjredelinghuys@gmail.com

Salt Documentation, Release 2016.3.4

In case the postgres database is a remote host, you'll need this command also:

ALTER ROLE salt WITH LOGIN;

and then:

psql -h localhost -U salt << EOF

-- Table structure for table 'jids'

DROP TABLE IF EXISTS jids;
CREATE TABLE jids (
jid varchar (20) PRIMARY KEY,
started TIMESTAMP WITH TIME ZONE DEFAULT now(),
tgt_type text NOT NULL,
cmd text NOT NULL,
tgt text NOT NULL,
kwargs text NOT NULL,
ret text NOT NULL,
username text NOT NULL,
arg text NOT NULL,
fun text NOT NULL

)

-—- Table structure for table 'salt_returns'

-— note that 'success' must not have NOT NULL constraint, since
-- some functions don't provide 1it.

DROP TABLE IF EXISTS salt_returns;
CREATE TABLE salt_returns (

added TIMESTAMP WITH TIME ZONE DEFAULT now(),
fun text NOT NULL,

jid varchar(20) NOT NULL,

return text NOT NULL,

id text NOT NULL,

success boolean
)5
CREATE INDEX ON salt_returns (added);
CREATE INDEX ON salt_returns (id);
CREATE INDEX ON salt_returns (jid);
CREATE INDEX ON salt_returns (fun);

DROP TABLE IF EXISTS salt_events;
CREATE TABLE salt_events (
id SERIAL,
tag text NOT NULL,
data text NOT NULL,
alter_time TIMESTAMP WITH TIME ZONE DEFAULT now(),
master_id text NOT NULL
)3
CREATE INDEX ON salt_events (tag);
CREATE INDEX ON salt_events (data);
CREATE INDEX ON salt_events (id);
CREATE INDEX ON salt_events (master_id);
EOF

2.22. Returners 251

Salt Documentation, Release 2016.3.4

Required python modules: psycopg2

salt.returners.postgres_local_cache.clean_old_jobs ()
Clean out the old jobs from the job cache

salt.returners.postgres_local_cache.event_return (events)
Return event to a postgres server

Require that configuration be enabled via “event_return’' option in master config.

salt.returners.postgres_local_cache.get_jid(jid)
Return the information returned when the specified job id was executed

salt.returners.postgres_local_cache.get_jids()
Return a list of all job ids For master job cache this also formats the output and returns a string

salt.returners.postgres_local_cache.get_load (jid)
Return the load data that marks a specified jid

salt.returners.postgres_local_cache.prep_jid (nocache=False, passed_jid=None)
Return a job id and prepare the job id directory This is the function responsible for making sure jids don't
collide (unless its passed a jid). So do what you have to do to make sure that stays the case

salt.returners.postgres_local_cache.returner (load)
Return data to a postgres server

salt.returners.postgres_local_cache.save_load (jid, clear_load, minions=None)
Save the load to the specified jid id

salt.returners.pushover_returner

Return salt data via pushover (http://www.pushover.net)
New in version 2016.3.0.

The following fields can be set in the minion conf file:

pushover.user (required)
pushover.token (required)
pushover.title (optional)
pushover.device (optional)
pushover.priority (optional)
pushover.expire (optional)
pushover.retry (optional)
pushover.profile (optional)

Alternative configuration values can be used by prefacing the configuration. Any values not found in the alternative
configuration will be pulled from the default location:

alternative.pushover.user
alternative.pushover.token
alternative.pushover.title
alternative.pushover.device
alternative.pushover.priority
alternative.pushover.expire
alternative.pushover.retry

PushOver settings may also be configured as:

252 Chapter 2. Configuring Salt

http://www.pushover.net

Salt Documentation, Release 2016.3.4

pushover:
USEr: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
token: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
title: Salt Returner
device: phone
priority: -1
expire: 3600
retry: 5

alternative.pushover:
USEr: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
token: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
title: Salt Returner
device: phone
priority: 1
expire: 4800
retry: 2

pushover_profile:
pushover.token: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

pushover:
USEr: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
profile: pushover_profile
alternative.pushover:
USEr: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
profile: pushover_profile
To use the PushOver returner, append '--return pushover' to the salt command. ex:
code-block:: bash

salt '+x' test.ping --return pushover

To use the alternative configuration, append '--return_config alternative' to the salti
—command. ex:

salt 'x' test.ping --return pushover --return_config alternative

To override individual configuration items, append --return_kwargs *{ "key:": *“value"}' to the salt command.

salt '+x' test.ping --return pushover --return_kwargs '{"title": "Salt is awesome!"}'

salt.returners.pushover_returner.returner (ret)
Send an PushOver message with the data

salt.returners.redis_return

Return data to a redis server

To enable this returner the minion will need the python client for redis installed and the following values configured
in the minion or master config, these are the defaults:

redis.db: '0'
redis.host: 'salt'
redis.port: 6379

2.22. Returners 253

Salt Documentation, Release 2016.3.4

Alternative configuration values can be used by prefacing the configuration. Any values not found in the alternative
configuration will be pulled from the default location:

alternative.redis.db: '0'
alternative.redis.host: 'salt'
alternative.redis.port: 6379

To use the redis returner, append "--return redis' to the salt command.

’salt 'x' test.ping --return redis

To use the alternative configuration, append "--return_config alternative' to the salt command.

New in version 2015.5.0.

’salt 'x' test.ping --return redis --return_config alternative

To override individual configuration items, append --return_kwargs *{ "key:": *“value"} to the salt command.

New in version 2016.3.0.

’salt 'x' test.ping —--return redis —--return_kwargs '{"db": "another-salt"}'

salt.returners.redis_return.clean_old_jobs()
Clean out minions's return data for old jobs.

Normally, hset ‘ret:<jid>' are saved with a TTL, and will eventually get cleaned by redis.But for jobs with
some very late minion return, the corresponding hset's TTL will be refreshed to a too late timestamp, we'll do
manually cleaning here.

salt.returners.redis_return.get_fun(fun)
Return a dict of the last function called for all minions

salt.returners.redis_return.get_jid(jid)
Return the information returned when the specified job id was executed

salt.returners.redis_return.get_jids()
Return a dict mapping all job ids to job information

salt.returners.redis_return.get_load (jid)
Return the load data that marks a specified jid

salt.returners.redis_return.get_minions()
Return a list of minions

salt.returners.redis_return.prep_jid(nocache=False, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.redis_return.returner (ret)
Return data to a redis data store

salt.returners.redis_return.save_load (jid, load, minions=None)
Save the load to the specified jid

salt.returners.sentry_return

Salt returner that reports execution results back to sentry. The returner will inspect the payload to identify errors
and flag them as such.

254 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

Pillar needs something like:

raven:
servers:
- http://192.168.1.1
- https://sentry.example.com
public_key: deadbeefdeadbeefdeadbeefdeadbeef
secret_key: beefdeadbeefdeadbeefdeadbeefdead
project: 1
tags:
- os
- master
- saltversion
- cpuarch

and https://pypi.python.org/pypi/raven installed

The tags list (optional) specifies grains items that will be used as sentry tags, allowing tagging of events in the sentry
ul.

salt.returners.sentry_return.prep_jid(nocache=False, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.sentry_return.returner (ret)
Log outcome to sentry. The returner tries to identify errors and report them as such. All other messages will
be reported at info level.

salt.returners.slack_returner

Return salt data via slack
New in version 2015.5.0.

The following fields can be set in the minion conf file:

code-block:: yaml

slack.channel (required) slack.api_key (required) slack.username (required) slack.as_user (required to
see the profile picture of your bot) slack.profile (optional) slack.changes(optional, only show changes
and failed states) slack.yaml_format(optional, format the json in yaml format)

Alternative configuration values can be used by prefacing the configuration. Any values not found in the alternative
configuration will be pulled from the default location:

slack.channel
slack.api_key
slack.username
slack.as_user

Slack settings may also be configured as:

slack:
channel: RoomName
api_key: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
username: user
as_user: true

alternative.slack:
room_id: RoomName

2.22. Returners 255

https://pypi.python.org/pypi/raven

Salt Documentation, Release 2016.3.4

api_key: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
from_name: user@email.com

slack_profile:
slack.api_key: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
slack.from_name: user@email.com

slack:
profile: slack_profile
channel: RoomName

alternative.slack:
profile: slack_profile
channel: RoomName

To use the Slack returner, append "--return slack' to the salt command.

’salt 'x' test.ping --return slack

To use the alternative configuration, append "--return_config alternative' to the salt command.

’salt 'x' test.ping --return slack --return_config alternative

To override individual configuration items, append --return_kwargs *{* ‘key:": *“value"}' to the salt command.

New in version 2016.3.0.

’salt "x' test.ping --return slack --return_kwargs '{"channel": "#random"}'

salt.returners.slack_returner.returner (ret)
Send an slack message with the data

salt.returners.sms_return

Return data by SMS.
New in version 2015.5.0.
maintainer Damian Myerscough
maturity new
depends twilio
platform all

To enable this returner the minion will need the python twilio library installed and the following values configured
in the minion or master config:

twilio.sid: " XXXXXXXXXXXXXXXXXXXX XXX X XXX XXX XXXX !
twilio.token: " XXX XXX KKK X XXX XXX KKXXXXXKXK!
twilio.to: '"+1415XXXXXXX'

twilio.from: '"+1650XXXXXXX'

To use the sms returner, append “--return sms' to the salt command.

salt '+x' test.ping --return sms

256 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

salt.returners.sms_return.returner (ret)
Return a response in an SMS message

salt.returners.smtp_return

Return salt data via email
The following fields can be set in the minion conf file. Fields are optional unless noted otherwise.
« from (required) The name/address of the email sender.
+ to (required) The name/address of the email recipient.
+ host (required) The SMTP server hostname or address.
« port The SMTP server port; defaults to 25.

« username The username used to authenticate to the server. If specified a password is also required. It is
recommended but not required to also use TLS with this option.

« password The password used to authenticate to the server.
« tls Whether to secure the connection using TLS; defaults to False
« subject The email subject line.

. fields Which fields from the returned data to include in the subject line of the email; comma-delimited.
For example: id, fun. Please note, the subject line is not encrypted.

- gpgowner A user's ~/.gpg directory. This must contain a gpg public key matching the address the mail
is sent to. If left unset, no encryption will be used. Requires python—-gnupg to be installed.

. template The path to a file to be used as a template for the email body.
- renderer A Salt renderer, or render-pipe, to use to render the email template. Default jinja.

Below is an example of the above settings in a Salt Minion configuration file:

smtp.from: me@example.net
smtp.to: you@example.com
smtp.host: localhost
smtp.port: 1025

Alternative configuration values can be used by prefacing the configuration. Any values not found in the alternative
configuration will be pulled from the default location. For example:

alternative.smtp.username: saltdev
alternative.smtp.password: saltdev
alternative.smtp.tls: True

To use the SMTP returner, append "--return smtp' to the salt command.

’salt 'x' test.ping —-return smtp

To use the alternative configuration, append "--return_config alternative' to the salt command.

New in version 2015.5.0.

’salt "x' test.ping --return smtp --return_config alternative

2.22. Returners 257

Salt Documentation, Release 2016.3.4

To override individual configuration items, append --return_kwargs *{ "key:": *“value"}' to the salt command.

New in version 2016.3.0.

’salt 'x' test.ping --return smtp --return_kwargs '{"to": "user@domain.com"}'

An easy way to test the SMTP returner is to use the development SMTP server built into Python. The command
below will start a single-threaded SMTP server that prints any email it receives to the console.

’python -m smtpd -n -c DebuggingServer localhost:1025

salt.returners.smtp_return.prep_jid(nocache=False, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.smtp_return.returner (ret)
Send an email with the data

salt.returners.sqlite3

Insert minion return data into a sqlite3 database
maintainer Mickey Malone <mickey.malone@gmail.com>
maturity New
depends None
platform All

Sqlite3 is a serverless database that lives in a single file. In order to use this returner the database file must exist,
have the appropriate schema defined, and be accessible to the user whom the minion process is running as. This
returner requires the following values configured in the master or minion config:

sqlite3.database: /usr/lib/salt/salt.db
sqlite3.timeout: 5.0

Alternative configuration values can be used by prefacing the configuration. Any values not found in the alternative
configuration will be pulled from the default location:

alternative.sqlite3.database: /usr/lib/salt/salt.db
alternative.sqlite3.timeout: 5.0

Use the commands to create the sqlite3 database and tables:

sqlite3 /usr/lib/salt/salt.db << EOF

-- Table structure for table 'jids'

CREATE TABLE jids (
jid TEXT PRIMARY KEY,
load TEXT NOT NULL

)

-— Table structure for table 'salt_returns'

CREATE TABLE salt_returns (

258 Chapter 2. Configuring Salt

mailto:mickey.malone@gmail.com

Salt Documentation, Release 2016.3.4

fun TEXT KEY,
jid TEXT KEY,
id TEXT KEY,
fun_args TEXT,
date TEXT NOT NULL,
full_ret TEXT NOT NULL,
success TEXT NOT NULL
)3

EOF

To use the sqlite returner, append "--return sqlite3' to the salt command.

’salt '"x' test.ping —--return sqlite3

To use the alternative configuration, append "--return_config alternative' to the salt command.

New in version 2015.5.0.

’salt "x' test.ping --return sqlite3 --return_config alternative

To override individual configuration items, append --return_kwargs *{ “key:": *“value"}' to the salt command.

New in version 2016.3.0.

salt '+' test.ping --return sqlite3 --return_kwargs '{"db": "/var/lib/salt/another-
—salt.db"}!'

salt.returners.sqlite3_return.get_fun(fun)
Return a dict of the last function called for all minions

salt.returners.sqlite3_return.get_jid(jid)
Return the information returned from a specified jid

salt.returners.sqlite3_return.get_jids()
Return a list of all job ids

salt.returners.sqlite3_return.get_load (jid)
Return the load from a specified jid

salt.returners.sqlite3_return.get_minions()
Return a list of minions

salt.returners.sqlite3_return.prep_jid (nocache=False, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.sqlite3_return.returner (ret)
Insert minion return data into the sqlite3 database

salt.returners.sqlite3_return.save_load (jid, load, minions=None)
Save the load to the specified jid

salt.returners.syslog_return

Return data to the host operating system's syslog facility
Required python modules: syslog, json
The syslog returner simply reuses the operating system's syslog facility to log return data

To use the syslog returner, append "--return syslog' to the salt command.

2.22. Returners 259

Salt Documentation, Release 2016.3.4

salt '"+x' test.ping --return syslog

Note: Syslog server implementations may have limits on the maximum record size received by the client. This may
lead to job return data being truncated in the syslog server's logs. For example, for rsyslog on RHEL-based systems,
the default maximum record size is approximately 2KB (which return data can easily exceed). This is configurable in
rsyslog.conf via the $MaxMessageSize config parameter. Please consult your syslog implmentation's documentation
to determine how to adjust this limit.

salt.returners.syslog_return.prep_jid(nocache=False, passed_jid=None)
Do any work necessary to prepare a JID, including sending a custom id

salt.returners.syslog_return.returner (ret)
Return data to the local syslog

salt.returners.xmpp_return

Return salt data via xmpp

The following fields can be set in the minion conf file:

xmpp.jid (required)
xmpp . password (required)
xmpp.recipient (required)
xmpp.profile (optional)

Alternative configuration values can be used by prefacing the configuration. Any values not found in the alternative
configuration will be pulled from the default location:

xmpp.jid
xmpp . password
Xmpp.recipient
xmpp.profile

XMPP settings may also be configured as:

Xmpp:
jid: user@xmpp.domain.com/resource
password: password
recipient: user@xmpp.example.com

alternative.xmpp:
jid: user@xmpp.domain.com/resource
password: password
recipient: someone@xmpp.example.com

xmpp_profile:
xmpp.jid: user@xmpp.domain.com/resource
xmpp . password: password

Xmpp:
profile: xmpp_profile
recipient: user@xmpp.example.com

alternative.xmpp:

260 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

profile: xmpp_profile
recipient: someone-else@xmpp.example.com

To use the XMPP returner, append "--return xmpp' to the salt command.

’salt "x' test.ping --return xmpp

To use the alternative configuration, append "--return_config alternative' to the salt command.

New in version 2015.5.0.

’salt 'x' test.ping --return xmpp --return_config alternative

To override individual configuration items, append --return_kwargs {" ‘key:": *“value"}' to the salt command.

New in version 2016.3.0.

salt '+x' test.ping --return xmpp —--return_kwargs '{"recipient'": "someone-else@xmpp.
—example.com"}'

class salt.returners.xmpp_return.SendMsgBot (jid, password, recipient, msg)

start (event)

salt.returners.xmpp_return.returner (ret)
Send an xmpp message with the data

2.23 Renderers

The Salt state system operates by gathering information from common data types such as lists, dictionaries, and
strings that would be familiar to any developer.

SLS files are translated from whatever data templating format they are written in back into Python data types to be
consumed by Salt.

By default SLS files are rendered as Jinja templates and then parsed as YAML documents. But since the only thing
the state system cares about is raw data, the SLS files can be any structured format that can be dreamed up.

Currently there is support for Jinja + YAML,Mako + YAML,Wempy + YAML, Jinja + json,Mako +
json and Wempy + json.

Renderers can be written to support any template type. This means that the Salt states could be managed by XML
files, HTML files, Puppet files, or any format that can be translated into the Pythonic data structure used by the state
system.

2.23.1 Multiple Renderers

A default renderer is selected in the master configuration file by providing a value to the renderer key.
When evaluating an SLS, more than one renderer can be used.
When rendering SLS files, Salt checks for the presence of a Salt-specific shebang line.

The shebang line directly calls the name of the renderer as it is specified within Salt. One of the most common
reasons to use multiple renderers is to use the Python or py renderer.

Below, the first line is a shebang that references the py renderer.

2.23. Renderers 261

Salt Documentation, Release 2016.3.4

#lpy

def run():

rr

Install the python-mako package
return {'include': ['python'],
'python-mako': {'pkg': ['installed']}}

2.23.2 Composing Renderers

A renderer can be composed from other renderers by connecting them in a series of pipes(|).

In fact, the default Jinja + YAML renderer is implemented by connecting a YAML renderer to a Jinja renderer.
Such renderer configuration is specified as: jinja | yaml.

Other renderer combinations are possible:
yaml i.e, just YAML, no templating.
mako | yaml pass the input to the mako renderer, whose output is then fed into the yam1 renderer.

jinja | mako | yaml This one allows you to use both jinja and mako templating syntax in the
input and then parse the final rendered output as YAML.

The following is a contrived example SLS file using the jinja | mako | yaml renderer:

#!jinja|mako|yaml

An_Example:
cmd.run:
- name: |
echo "Using Salt ${grains['saltversion']}" \
"from path {{grains['saltpath']}}."
- cwd: /

<%doc> ${...} is Mako's notation, and so is this comment. </%doc>
{# Similarly, {{...}} is Jinja's notation, and so is this comment. #}

For backward compatibility, jinja | yaml can also be written as yaml_jinja, and similarly, the yaml_mako,
yaml_wempy, json_jinja, json_mako, and json_wempy renderers are all supported.

Keep in mind that not all renderers can be used alone or with any other renderers. For example, the template
renderers shouldn't be used alone as their outputs are just strings, which still need to be parsed by another renderer
to turn them into highstate data structures.

For example, it doesn't make sense to specify yaml | 3jinja because the output of the YAML renderer is a
highstate data structure (a dict in Python), which cannot be used as the input to a template renderer. Therefore,
when combining renderers, you should know what each renderer accepts as input and what it returns as output.

2.23.3 Writing Renderers

A custom renderer must be a Python module placed in the renderers directory and the module implement the ren-
der function.

The render function will be passed the path of the SLS file as an argument.

262 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

The purpose of of render function is to parse the passed file and to return the Python data structure derived from

the file.

Custom renderers must be placed in a _renderers directory within the file_roots specified by the master

config file.

Custom renderers are distributed when any of the following are run:

- state.apply
« saltutil.sync_renderers

« saltutil.sync_all

Any custom renderers which have been synced to a minion, that are named the same as one of Salt's default set of
renderers, will take the place of the default renderer with the same name.

2.23.4 Examples

The best place to find examples of renderers is in the Salt source code.

Documentation for renderers included with Salt can be found here:

https://github.com/saltstack/salt/blob/develop/salt/renderers

Here is a simple YAML renderer example:

import yaml
def render(yaml_data, env='",

yaml_data = yaml_data.read()
data = yaml.load(yaml_data)
return data if data else {}

sls="", *xkws):
if not isinstance(yaml_data, basestring):

2.23.5 Full List of Renderers

renderer modules

cheetah Cheetah Renderer for Salt

genshi Genshi Renderer for Salt

apg Renderer that will decrypt GPG ciphers

hjson Hjson Renderer for Salt

jinja Jinja loading utils to enable a more powerful backend for
jinja templates

json JSON Renderer for Salt

json5 JSONS5 Renderer for Salt

mako Mako Renderer for Salt

msgpack

py Pure python state renderer

pydsl A Python-based DSL

pyobjects Python renderer that includes a Pythonic Object based in-
terface

stateconf A flexible renderer that takes a templating engine and a

data format

Continued on next page

2.23. Renderers

263

https://github.com/saltstack/salt/blob/develop/salt/renderers

Salt Documentation, Release 2016.3.4

Table 2.2 -- continued from previous page

wempy

yaml

yamlex

salt.renderers.cheetah

Cheetah Renderer for Salt

salt.renderers.cheetah.render (cheetah_data, saltenv="base’, sls="", method="xml’, **kws)
Render a Cheetah template.

Return type A Python data structure

salt.renderers.genshi

Genshi Renderer for Salt

salt.renderers.genshi.render (genshi_data, saltenv="base', sls="", method="xml', “*kws)
Render a Genshi template. A method should be passed in as part of the kwargs. If no method is passed in, xml
is assumed. Valid methods are:

Note that the text method will call NewTextTemplate. If oldtext is desired, it must be called explicitly

Return type A Python data structure

salt.renderers.gpg

Renderer that will decrypt GPG ciphers

Any key in the SLS file can be a GPG cipher, and this renderer will decrypt it before passing it off to Salt. This allows
you to safely store secrets in source control, in such a way that only your Salt master can decrypt them and distribute
them only to the minions that need them.

The typical use-case would be to use ciphers in your pillar data, and keep a secret key on your master. You can put
the public key in source control so that developers can add new secrets quickly and easily.

This renderer requires the gpg binary. No python libraries are required as of the 2015.8.0 release.

Setup

To set things up, first generate a keypair. On the master, run the following:

mkdir -p /etc/salt/gpgkeys
chmod 0700 /etc/salt/gpgkeys
gpg —-gen—-key —--homedir /etc/salt/gpgkeys

Do not supply a password for the keypair, and use a name that makes sense for your application. Be sure to back up
the gpgkeys directory someplace safe!

Note: Unfortunately, there are some scenarios - for example, on virtual machines which don’t have real hardware
- where insufficient entropy causes key generation to be extremely slow. In these cases, there are usually means

264 Chapter 2. Configuring Salt

https://gnupg.org

Salt Documentation, Release 2016.3.4

of increasing the system entropy. On virtualised Linux systems, this can often be achieved by installing the rng-
tools package.

Export the Public Key

gpg ——homedir /etc/salt/gpgkeys —--armor --export <KEY-NAME> > exported_pubkey.gpg

Import the Public Key

To encrypt secrets, copy the public key to your local machine and run:

$ gpg -—import exported_pubkey.gpg

To generate a cipher from a secret:

$ echo -n "supersecret" | gpg --armor --batch --trust-model always --encrypt -r <KEY-
—name>

To apply the renderer on a file-by-file basis add the following line to the top of any pillar with gpg data in it:

#!yaml|gpg

Now with your renderer configured, you can include your ciphers in your pillar data like so:

#!yaml|gpg

a-secret: |
————— BEGIN PGP MESSAGE-----
Version: GnuPG vl

hQEMAweRHKaPCfNeAQf9GLTN16hCfXAbPwWU6BbBKOUNOC7i9/etGuVc5CyU9Q6um
QuetdvQVLFO/HkrC41geNQdM6D9E8PKonM1gJPyUvC8ggxhj0/IPFEKmrsnv2k6+
cnEfmVexS70/U1VOVjoyUeliMCI1Az/30RXaME49Cpi6N02+vKD8a4q4nZN1UZcG
RhkhC0S22zNx0XQ38TBkmtJcqxnqT6YWKTUsjVubW3bVC+u2HGqIHU79wmwuN8tz
m4wBk fCAd8EYy02jENWQCM4TcXi1FO1XPL4z4g1l /9AAXxh+Q4d8RIRP4fbw7ct4nCIv
Gr9v2DTF7HNigIM14ivMIn9fp+EZurINiQskLgNbktJGAeEKYkgX5iCuB1b693hJ
FK1IwHi1Jt5yA8X2dDtfk8/Ph1Ix2TwGS+1Gj1ZaNqp3R1xuAZzXzZMLyZDe5+73RJ
skgmFTbOiA===Eqsm

***** END PGP MESSAGE-----

Encrypted CLI Pillar Data

New in version 2016.3.0.

Functions like state. highstate and state. s s allow for pillar data to be passed on the CLL

salt myminion state.highstate pillar="{'mypillar': 'foo'}"

Starting with the 2016.3.0 release of Salt, it is now possible for this pillar data to be GPG-encrypted, and to use the
GPG renderer to decrypt it.

2.23. Renderers 265

Salt Documentation, Release 2016.3.4

Replacing Newlines

To pass encrypted pillar data on the CLI the ciphertext must have its newlines replaced with a literal backslash-n
(\n), as newlines are not supported within Salt CLI arguments. There are a number of ways to do this:

With awk or Perl:

awk

ciphertext="echo -n "supersecret" | gpg --armor --batch --trust-model always --encryptl
—-r user@domain.com | awk '{printf "%s\\n",$0} END {print ""}'®

Perl

ciphertext="echo -n "supersecret" | gpg --armor --batch --trust-model always --encryptll

—-r user@domain.com | perl -pe 's/\n/\\n/g'"

With Python:

import subprocess

secret, stderr = subprocess.Popen(
['gpg', '-—armor', '—--batch', '--trust-model', 'always', '--encrypt',
'-r', 'user@domain.com'],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE).communicate(input="'supersecret')

if secret:
print(secret.replace('\n', r'\n'))
else:
raise ValueError('No ciphertext found: {0}'.format(stderr))

ciphertext="python /path/to/script.py’

The ciphertext can be included in the CLI pillar data like so:

salt myminion state.sls secretstuff pillar_enc=gpg pillar="{secret_pillar: 'Sciphertext
;}l}ll

The pillar_enc=gpg argument tells Salt that there is GPG-encrypted pillar data, so that the CLI pillar data is
passed through the GPG renderer, which will iterate recursively though the CLI pillar dictionary to decrypt any
encrypted values.

Encrypting the Entire CLI Pillar Dictionary

If several values need to be encrypted, it may be more convenient to encrypt the entire CLI pillar dictionary. Again,
this can be done in several ways:

With awk or Perl:

awk

ciphertext="echo -n "{'secret_a': 'CorrectHorseBatteryStaple', 'secret_b': 'GPG is fun!
~'}" | gpg --armor --batch --trust-model always --encrypt -r user@domain.com | awk '
<~ {printf "%s\\n",$0} END {print ""}'®

Perl

ciphertext="echo -n "{'secret_a': 'CorrectHorseBatteryStaple', 'secret_b': 'GPG is fun!
—'}" | gpg -—armor --batch --trust-model always --encrypt -r user@domain.com | perl -

—pe 's/\n/\\n/g'"

266 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

With Python:

import subprocess

pillar_data = {'secret_a': 'CorrectHorseBatteryStaple',
'secret_b': 'GPG s fun!'}

secret, stderr = subprocess.Popen(
['gpg', '-—armor', '—--batch', '--trust-model', 'always', '--encrypt',
'-r', 'user@domain.com'],
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE).communicate(input=repr(pillar_data))

if secret:
print(secret.replace('\n', r'\n'))
else:
raise ValueError('No ciphertext found: {0}'.format(stderr))

’ ciphertext="python /path/to/script.py’

With the entire pillar dictionary now encrypted, it can be included in the CLI pillar data like so:

’salt myminion state.sls secretstuff pillar_enc=gpg pillar="$ciphertext"

salt.renderers.gpg.render (gpg data, saltenv="base’, sls="", argline="", *“kwargs)
Create a gpg object given a gpg_keydir, and then use it to try to decrypt the data to be rendered.

salt.renderers.hjson

Hjson Renderer for Salt http://laktak.github.io/hjson/

salt.renderers.hjson.render (hjson_data, saltenv="base, sls="", **kws)
Accepts HJSON as a string or as a file object and runs it through the HJSON parser.

Return type A Python data structure

salt.renderers.jinja

Jinja loading utils to enable a more powerful backend for jinja templates
For Jinja usage information see Understanding Jinja.

salt.renderers.jinja.render (template file, saltenv='base’, sls='"", argline="", context=None, tm-
plpath=None, *“kws)
Render the template_file, passing the functions and grains into the Jinja rendering system.

Return type string

class salt.utils.jinja.SerializerExtension (environment)
Yaml and Json manipulation.

Format filters

Allows jsonifying or yamlifying any data structure. For example, this dataset:

2.23. Renderers 267

http://laktak.github.io/hjson/

Salt Documentation, Release 2016.3.4

data = {
'foo': True,
'bar': 42,
'baz': [1, 2, 3],
'qux': 2.0

}

yaml = {{ data|yaml }}
json = {{ data|json }}
python = {{ data|python }}

will be rendered as:

yaml = {bar: 42, baz: [1, 2, 3], foo: true, qux: 2.0}
json = {"baz": [1, 2, 3], "foo": true, "bar": 42, "qux": 2.0}
python = {'bar': 42, 'baz': [1, 2, 3], 'foo': True, 'qux': 2.0}

The yaml filter takes an optional flow_style parameter to control the default-flow-style parameter of the YAML
dumper.

{{ data|yaml(False) }}

will be rendered as:

bar: 42
baz:
-1
-3
foo: true
qux: 2.0

N

Load filters

Strings and variables can be deserialized with load_yaml and load_json tags and filters. It allows one to
manipulate data directly in templates, easily:

%- set yaml_src = "{foo: it works}"|load_yaml %}
{%- set json_src = "{'bar': 'for real'}"|load_json %}
Dude, {{ yaml_src.foo }} {{ json_src.bar }}!

will be rendered as:

Dude, it works for real!

Load tags

Salt implements Lload_yaml and load_json tags. They work like the import tag, except that the document
is also deserialized.

Syntaxes are {% load_yaml as [VARIABLE] %}[YOUR DATA]{% endload %} and {%
load_json as [VARIABLE] %}[YOUR DATA]{% endload %}

For example:

% load_yaml as yaml_src %}
foo: it works
{% endload %}

268

Chapter 2. Configuring Salt

http://jinja.pocoo.org/docs/templates/#import

Salt Documentation, Release 2016.3.4

{% load_json as json_src %}
{
"bar": "for real"
}
% endload %
Dude, {{ yaml_src.foo }} {{ json_src.bar }}!

will be rendered as:

Dude, it works for real!

Import tags

External files can be imported and made available as a Jinja variable.

{% dAmport_yaml "myfile.yml" as myfile %}
% dmport_json "defaults.json" as defaults %
% import_text "completeworksofshakespeare.txt" as poems %}

Catalog

import_* and load_x tags will automatically expose their target variable to import. This feature makes
catalog of data to handle.

for example:

docl.sls

{% load_yaml as varl %}
foo: it works

% endload %}

{% load_yaml as var2 %}
bar: for real

% endload %}

doc2.sls
{% from "docl.sls" dimport varl, var2 as local2 %}
{{ varl.foo }} {{ local2.bar }}

salt.renderers.json

JSON Renderer for Salt

salt.renderers.json.render (json_data, saltenv="base', sls="", *“kws)
Accepts JSON as a string or as a file object and runs it through the JSON parser.

Return type A Python data structure

salt.renderers.json5

JSONS5 Renderer for Salt
New in version 2016.3.0.
JSONS is an unofficial extension to JSON. See http://json5.org/ for more information.

This renderer requires the json5 python bindings, installable via pip.

2.23. Renderers 269

http://json5.org/
https://pypi.python.org/pypi/json5

v o o oe W@ o =

Salt Documentation, Release 2016.3.4

salt.renderers.json5.render (json_data, saltenv="base’, sls="", **kws)

Accepts JSON as a string or as a file object and runs it through the JSON parser.

Return type A Python data structure

salt.renderers.mako

Mako Renderer for Salt

salt.renderers.mako.render (template file, saltenv='base', sls='"", context=None, tmplpath=None,

**kws)
Render the template_file, passing the functions and grains into the Mako rendering system.

Return type string

salt.renderers.msgpack

salt.renderers.msgpack.render (msgpack_data, saltenv="base’, sls="", “*kws)

Accepts a message pack string or a file object, renders said data back to a python dict.

Return type A Python data structure

salt.renderers.py

Pure python state renderer

The SLS file should contain a function called run which returns high state data.

In this module, a few objects are defined for you, giving access to Salt's execution functions, grains, pillar, etc. They

are:

__salt__ - Execution functions (ie. __salt__['test.echo']('foo"))
__grains__- Grains(ie. __grains__['os"'])

__pillar__ - Pillar data (i.e. __pillar__['foo'])

opts__ - Minion configuration options

__env__ - The effective salt fileserver environment (i.e. base). Also referred to as a *“saltenv". __env__
should not be modified in a pure python SLS file. To use a different environment, the environment should be
set when executing the state. This can be done in a couple different ways:

- Using the saltenv argument on the salt CLI (ie. salt 'x' state.sls foo.bar.baz
saltenv=env_name).

- By adding a saltenv argument to an individual state within the SLS file. In other words, adding a line
like this to the state's data structure: {'saltenv': 'env_name'}

sls__ - The SLS path of the file. For example, if the root of the base environment is /srv/salt, and the

SLSfileis /srv/salt/foo/bar/baz.sls, then __sls__ in that file will be foo.bar.baz.

#lpy
def run():
config = {}
if __grains__['os'] == 'Ubuntu':
user = 'ubuntu'
270 Chapter 2. Configuring Salt

R . B RN

Salt Documentation, Release 2016.3.4

group = 'ubuntu'

home = '/home/{0}'.format(user)
else:

user = 'root'

group = 'root'

home = '/root/'

config['s3cmd'] = {
'pkg': [
"installed',
{'name': 's3cmd'},
1,
}

configlhome + '/.s3cfg'] = {

'file.managed': [
{'source': 'salt://s3cfg/templates/s3cfg'},
{'template': 'jinja'},
{'user': user},
{'group': group},
{'mode': 600},
{'context': {

'aws_key': __pillar__['AWS_ACCESS_KEY_ID'],
'aws_secret_key': __pillar__['AWS_SECRET_ACCESS_KEY'],
1,

5
1,
}

return config

salt.renderers.py.render (template, saltenv="base sls="", tmplpath=None, *“kws)
Render the python module's components

Return type string

salt.renderers.pydsl

A Python-based DSL
maintainer Jack Kuan <kjkuan@gmail.com>
maturity new

platform all

The pydsl renderer allows one to author salt formulas (.sls files) in pure Python using a DSL that's easy to write and

easy to read. Here's an example:

#!pydsl

apache = state('apache')
apache.pkg.installed()
apache.service.running()
state('/var/www/index.html") \
.file('managed',
source="salt://webserver/index.html') \
.require(pkg="apache')

2.23. Renderers

271

mailto:kjkuan@gmail.com

Salt Documentation, Release 2016.3.4

Notice that any Python code is allow in the file as it's really a Python module, so you have the full power of Python
at your disposal. In this module, a few objects are defined for you, including the usual (with __ added) __salt__
dictionary, __grains__, __pillar__, __opts__,__env__,and __sls__, plus a few more:

__file__
local file system path to the sls module.
——pydsl__
Salt PyDSL object, useful for configuring DSL behavior per sls rendering.
include
Salt PyDSL function for creating Include declaration’s.
extend
Salt PyDSL function for creating Extend declaration’s.
state
Salt PyDSL function for creating ID declaration’s.

A state ID declaration is created with a state (7d) function call. Subsequent state(id) call with the same id
returns the same object. This singleton access pattern applies to all declaration objects created with the DSL.

state('example')

assert state('example') 1is state('example')

assert state('example').cmd is state('example').cmd

assert state('example').cmd.running is state('example').cmd.running

The id argument is optional. If omitted, an UUID will be generated and used as the id.

state(id) returns an object under which you can create a State declaration object by accessing an attribute named
after any state module available in Salt.

state('example').cmd
state('example').file
state('example') .pkg

Then, a Function declaration object can be created from a State declaration object by one of the following two ways:

1. by calling a method named after the state function on the State declaration object.

’ state('example').file.managed(...)

2. by directly calling the attribute named for the State declaration, and supplying the state function name as the
first argument.

’ state('example').file('managed', ...)

With either way of creating a Function declaration object, any Function arg declaration’s can be passed as keyword
arguments to the call. Subsequent calls of a Function declaration will update the arg declarations.

state('example').file('managed', source='salt://webserver/index.html")
state('example').file.managed(source="salt://webserver/index.html")

As a shortcut, the special name argument can also be passed as the first or second positional argument depending
on the first or second way of calling the State declaration object. In the following two examples Is -la is the name
argument.

272 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

state('example').cmd.run('ls -la', cwd='/")
state('example').cmd('run', 'ls -la', cwd="/")

Finally, a Requisite declaration object with its Requisite reference’s can be created by invoking one of the requisite
methods (see State Requisites) on either a Function declaration object or a State declaration object. The return value
of a requisite call is also a Function declaration object, so you can chain several requisite calls together.

Arguments to a requisite call can be a list of State declaration objects and/or a set of keyword arguments whose
names are state modules and values are IDs of ID declaration’s or names of Name declaration’s.

apache2 = state('apache2')
apache2.pkg.installed()
state('libapache2-mod-wsgi') .pkg.installed()

you can call requisites on function declaration
apache2.service.running() \
.require(apache2.pkg,
pkg="'1libapache2-mod-wsgi') \
.watch(file="'/etc/apache2/httpd.conf")

or you can call requisites on state declaration.
this actually creates an anonymous function declaration object
to add the requisites.
apache2.service.require(state('libapache2-mod-wsgi') .pkg,
pkg="'apache2') \
.watch(file="'/etc/apache2/httpd.conf")

we still need to set the name of the function declaration.
apache2.service.running()

Include declaration objects can be created with the i nclude function, while Extend declaration objects can be created
with the extend function, whose arguments are just Function declaration objects.

include('edit.vim', 'http.server')
extend(state('apache2').service.watch(file="'/etc/httpd/httpd.conf")

The include function, by default, causes the included sls file to be rendered as soon as the include function is
called. It returns a list of rendered module objects; sls files not rendered with the pydsl renderer return None's. This
behavior creates no Include declaration’s in the resulting high state data structure.

import types

including multiple sls returns a list.
_, mod = dinclude('a-non-pydsl-sls', 'a-pydsl-sls')

assert is None

assert isinstance(slsmods[1l], types.ModuleType)

including a single sls returns a single object
mod = include('a-pydsl-sls')

myfunc is a function that calls state(...) to create more states.
mod.myfunc(1l, 2, "three")

Notice how you can define a reusable function in your pydsl sls module and then call it via the module returned by
include.

It's still possible to do late includes by passing the delayed=True keyword argument to include.

2.23. Renderers 273

Salt Documentation, Release 2016.3.4

include('edit.vim', 'http.server', delayed=True)

Above will just create a Include declaration in the rendered result, and such call always returns None.

Special integration with the cmd state

Taking advantage of rendering a Python module, PyDSL allows you to declare a state that calls a pre-defined Python
function when the state is executed.

greeting = "hello world"
def helper(something, *args, *xkws):
print greeting # hello world
print something, args, kws # test123 ['a', 'b', 'c'] {'x': 1, 'y': 2}

state().cmd.call(helper, "test123", 'a', 'b', 'c', x=1, y=2)

The cmd.call state function takes care of calling our helper function with the arguments we specified in
the states, and translates the return value of our function into a structure expected by the state system. See
salt.states.cmd.call () for more information.

Implicit ordering of states

Salt states are explicitly ordered via Requisite declaration’s. However, with pydsl it's possible to let the renderer
track the order of creation for Function declaration objects, and implicitly add requi re requisites for your states to
enforce the ordering. This feature is enabled by setting the ordered option on __pydsl__.

Note: this feature is only available if your minions are using Python >= 2.7.

include('some.sls.file'")

A = state('A').cmd.run(cwd="'/var/tmp")
extend(A)

__pydsl__.set(ordered=True)

for i in range(10):

i = str(d)

state(i).cmd.run('echo '+i, cwd='/")
state('1').cmd.run('echo one')
state('2').cmd.run(name="echo two')

Notice that the ordered option needs to be set after any extend calls. This is to prevent pyds! from tracking the
creation of a state function that's passed to an extend call.

Above example should create states from 0 to 9 that will output 0, one, two, 3, ... 9, in that order.

It's important to know that pydsl tracks the creations of Function declaration objects, and automatically adds a re—
quiire requisite to a Function declaration object that requires the last Function declaration object created before it in
the sls file.

This means later calls (perhaps to update the function's Function arg declaration) to a previously created function
declaration will not change the order.

274 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

Render time state execution

When Salt processes a salt formula file, the file is rendered to salt's high state data representation by a renderer
before the states can be executed. In the case of the pydsl renderer, the .sls file is executed as a python module as
it is being rendered which makes it easy to execute a state at render time. In pydsl, executing one or more states at
render time can be done by calling a configured ID declaration object.

#!pydsl

s = state() # save for later invocation
configure it

s.cmd.run('echo at render time', cwd='/")

s.file.managed('target.txt', source='salt://source.txt")

s() # execute the two states now

Once an ID declaration is called at render time it is detached from the sls module as if it was never defined.

Note: If implicit ordering is enabled (i.e., via __pydsl__.set(ordered=True)) then the first invocation of a
ID declaration object must be done before a new Function declaration is created.

Integration with the stateconf renderer

The salt.renderers.stateconf renderer offers a few interesting features that can be leveraged by the pydsl renderer. In
particular, when using with the pydsl renderer, we are interested in stateconf s sls namespacing feature (via dot-
prefixed id declarations), as well as, the automatic start and goal states generation.

Now you can use pydsl with stateconf like this:

#!pydsl|stateconf -ps
include('xxx"', 'yyy")

ensure that states in xxx run BEFORE states in this file.
extend(state('.start').stateconf.require(stateconf="xxx::goal'))

ensure that states in yyy run AFTER states in this file.
extend(state('.goal').stateconf.require_in(stateconf="yyy::start'))

__pydsl__.set(ordered=True)

—s enables the generation of a stateconf start state, and —p lets us pipe high state data rendered by pydsl to stateconf.
This example shows that by require-ing or require_1in-ing the included sls' start or goal states, it's possible to
ensure that the included sls files can be made to execute before or after a state in the including sls file.

Importing custom Python modules

To use a custom Python module inside a PyDSL state, place the module somewhere that it can be loaded by the Salt
loader, such as _modules in the /srv/salt directory.

2.23. Renderers 275

Salt Documentation, Release 2016.3.4

Then, copy it to any minions as necessary by using saltutil.sync_modules.

To import into a PyDSL SLS, one must bypass the Python importer and insert it manually by getting a reference from
Python's sys.modules dictionary.

For example:

#!pydsl|stateconf -ps

def main():
my_mod = sys.modules['salt.loaded.ext.module.my_mod']

salt.renderers.pydsl.render (template, saltenv="base’ sls='"", tmplpath=None, rendered_sls=None,
**kws)

salt.renderers.pyobjects

Python renderer that includes a Pythonic Object based interface
maintainer Evan Borgstrom <evan@borgstrom.ca>

Let's take a look at how you use pyobjects in a state file. Here's a quick example that ensures the /tmp directory is
in the correct state.

#!pyobjects

File.managed("/tmp", user='root', group='root', mode='1777")

Nice and Pythonic!

By using the " “shebang" syntax to switch to the pyobjects renderer we can now write our state data using an object
based interface that should feel at home to python developers. You can import any module and do anything that
you'd like (with caution, importing sqlalchemy, django or other large frameworks has not been tested yet). Using
the pyobjects renderer is exactly the same as using the built-in Python renderer with the exception that pyobjects
provides you with an object based interface for generating state data.

Creating state data

Pyobjects takes care of creating an object for each of the available states on the minion. Each state is represented by
an object that is the CamelCase version of its name (i.e. File, Service, User, etc), and these objects expose all
of their available state functions (i.e. File.managed, Service.running, etc).

The name of the state is split based upon underscores (_), then each part is capitalized and finally the parts are joined
back together.

Some examples:
« postgres_user becomes PostgresUser

« ssh_known_hosts becomes SshKnownHosts

Context Managers and requisites

How about something a little more complex. Here we're going to get into the core of how to use pyobjects to write
states.

276 Chapter 2. Configuring Salt

mailto:evan@borgstrom.ca

Salt Documentation, Release 2016.3.4

#!pyobjects

with Pkg.installed("nginx"):
Service.running('"'nginx", enable=True)

with Service("nginx", "watch_in"):
File.managed("/etc/nginx/conf.d/mysite.conf",
owner="root', group='root', mode='0444",
source='salt://nginx/mysite.conf")

The objects that are returned from each of the magic method calls are setup to be used a Python context managers
(with) and when you use them as such all declarations made within the scope will automatically use the enclosing
state as a requisite!

The above could have also been written use direct requisite statements as.

#!pyobjects

Pkg.installed("nginx")

Service.running('"'nginx", enable=True, require=Pkg(''nginx"))

File.managed("/etc/nginx/conf.d/mysite.conf",
owner='root', group='root', mode='0444",
source="'salt://nginx/mysite.conf',
watch_in=Service("nginx"))

You can use the direct requisite statement for referencing states that are generated outside of the current file.

#!pyobjects

some-other-package is defined in some other state file
Pkg.installed("nginx", require=Pkg("some-other-package"))

The last thing that direct requisites provide is the ability to select which of the SaltStack requisites you want to use
(require, require_in, watch, watch_in, use & use_in) when using the requisite as a context manager.

#!pyobjects

with Service("my-service", "watch_in"):

The above example would cause all declarations inside the scope of the context manager to automatically have their
watch_insetto Service("my-service").

Including and Extending

To include other states use the include () function. It takes one name per state to include.

To extend another state use the extend () function on the name when creating a state.

#!pyobjects
include('http', 'ssh')

Service.running(extend('apache'),
watch=[File('/etc/httpd/extra/httpd-vhosts.conf')])

2.23. Renderers 277

T T CE

s W o e

B N Ly R

Salt Documentation, Release 2016.3.4

Importing from other state files

Like any Python project that grows you will likely reach a point where you want to create reusability in your state
tree and share objects between state files, Map Data (described below) is a perfect example of this.

To facilitate this Python's impor t statement has been augmented to allow for a special case when working with a
Salt state tree. If you specify a Salt url (salt://...) asthe target for importing from then the pyobjects renderer
will take care of fetching the file for you, parsing it with all of the pyobjects features available and then place the
requested objects in the global scope of the template being rendered.

This works for all types of import statements; import X, from X import Y,and from X dimport Y as Z.

#!pyobjects

import salt://myfile.sls
from salt://something/data.sls +import Object
from salt://something/data.sls import Object as Other

See the Map Data section for a more practical use.
Caveats:

« Imported objects are ALWAYS put into the global scope of your template, regardless of where your import
statement is.

Salt object

In the spirit of the object interface for creating state data pyobjects also provides a simple object interface to the
_salt__ object.

A function named sa'lt exists in scope for your sls files and will dispatch its attributes to the __salt__ dictionary.

The following lines are functionally equivalent:

#!pyobjects

ret = salt.cmd.run(bar)
ret = __salt__['cmd.run'] (bar)

Pillar, grain, mine & config data

Pyobjects provides shortcut functions for calling pillar.get, grains.get, mine.get & config.get on
the __sa'lt__ object. This helps maintain the readability of your state files.

Each type of data can be access by a function of the same name: pillar (), grains(),mine() and config().

The following pairs of lines are functionally equivalent:

#!pyobjects

value = pillar('foo:bar:baz', 'qux'")
value = __salt__['pillar.get']('foo:bar:baz', 'qux")

value = grains('pkg:apache')
value = __salt__['grains.get']('pkg:apache')

value = mine('os:Fedora', 'network.interfaces', 'grain'")

278 Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

value = __salt__['mine.get']('os:Fedora', 'network.interfaces', 'grain')

value = config('foo:bar:baz', 'qux")
value = __salt__['config.get']('foo:bar:baz', 'qux")

Map Data

When building complex states or formulas you often need a way of building up a map of data based on grain data.
The most common use of this is tracking the package and service name differences between distributions.

To build map data using pyobjects we provide a class named Map that you use to build your own classes with inner
classes for each set of values for the different grain matches.

#!pyobjects

class Samba(Map):
merge = 'samba: lookup'

class Debian:

server = 'samba'
client = 'samba-client'
service = 'samba'

class Ubuntu:
__grain__ = 'os'
service = 'smbd'

class RedHat:

server = 'samba'
client = 'samba'
service = 'smb'

To use this new data you can import it into your state file and then access your attributes. To access the data in the
map you simply access the attribute name on the base class that is extending Map. Assuming the above Map was in
the file samba/map. sls, you could do the following.

#!pyobjects
from salt://samba/map.sls import Samba

with Pkg.installed("samba'", names=[Samba.server, Samba.client]):
Service.running("samba", name=Samba.service)

TODO

« Interface for working with reactor files

class salt.renderers.pyobjects.PyobjectsModule (name, atirs)
This provides a wrapper for bare imports.

salt.renderers.pyobjects.load_states()
This loads our states into the salt __context

salt.renderers.pyobjects.render (template, saltenv="base', sls="", salt_data=True, **kwargs)

2.23. Renderers 279

Salt Documentation, Release 2016.3.4

salt.renderers.stateconf

maintainer Jack Kuan <kjkuan@gmail.com>
maturity new

platform all

This module provides a custom renderer that processes a salt file with a specified templating engine (e.g. Jinja) and
a chosen data renderer (e.g. YAML), extracts arguments for any stateconf. set state, and provides the extracted
arguments (including Salt-specific args, such as require, etc) as template context. The goal is to make writing
reusable/configurable/parameterized salt files easier and cleaner.

To use this renderer, either set it as the default renderer via the renderer option in master/minion's config, or use
the shebang line in each individual sls file, like so: # ! stateconf. Note, due to the way this renderer works, it must
be specified as the first renderer in a render pipeline. That is, you cannot specify # !mako | yaml|stateconf, for
example. Instead, you specify them as renderer arguments: #!stateconf mako . yaml.

Here's a list of features enabled by this renderer.

« Prefixes any state id (declaration or reference) that starts with a dot (.) to avoid duplicated state ids when the

salt file is included by other salt files.

For example, in the salt://some/file.sls, a state id such as .sls_params will be turned into
some. file: :sls_params. Example:

#lstateconf yaml . jinja

.vim:
pkg.installed

Above will be translated into:

some.file::vim:
pkg.installed:
- name: vim

Notice how that if a state under a dot-prefixed state id has no name argument then one will be added auto-
matically by using the state id with the leading dot stripped off.

The leading dot trick can be used with extending state ids as well, so you can include relatively and extend
relatively. For example, when extending a state in salt://some/other_file.sls, e.g.:

#!stateconf yaml . jinja

include:
- .file

extend:
.file::sls_params:
stateconf.set:
- namel: something

Above will be pre-processed into:

include:
- some.file

extend:
some.file::sls_params:

280

Chapter 2. Configuring Salt

mailto:kjkuan@gmail.com

Salt Documentation, Release 2016.3.4

stateconf.set:
- namel: something

« Addsa sls_d1ir context variable that expands to the directory containing the rendering salt file. So, you can
write salt://{{sls_dir}}/... toreference templates files used by your salt file.

« Recognizes the special state function, stateconf. set, that configures a default list of named arguments
usable within the template context of the salt file. Example:

#lstateconf yaml . jinja

.sls_params:
stateconf.set:
- namel: valuel
- name2: value2
- name3:
- valuel
- value2
- value3
- require_in:
- cmd: output

--— end of state config —--
.output:

cmd.run:
- name:

This even works with include + extend so that you can override the default configured arguments by
including the salt file and then extend the stateconf.set states that come from the included salt file.
(IMPORTANT: Both the included and the extending sls files must use the stateconf renderer for this " “extend " to
work!)

Notice that the end of configuration marker (# —---end of state config --)is needed to separate
the use of “stateconf.set' form the rest of your salt file. The regex that matches such marker can be configured
via the stateconf_end_marker option in your master or minion config file.

Sometimes, it is desirable to set a default argument value that's based on earlier arguments in the same state-
conf.set. For example, it may be tempting to do something like this:

#!stateconf yaml . jinja

.apache:
stateconf.set:
- host: localhost
- port: 1234
- url: '"http://{{host}}:{{port}}/’

--- end of state config ---
.test:
cmd.run:
- name: echo '{{apache.url}}'
- cwd: /

2.23. Renderers 281

Salt Documentation, Release 2016.3.4

However, this won't work. It can however be worked around like so:

#!stateconf yaml . jinja

.apache:
stateconf.set:
- host: localhost
- port: 1234
{# - url: '"http://{{host}}:{{port}}/"' #}

--— end of state config —--
{{ apache.setdefault('url', "http://%(host)s:%(port)s/" % apache) }}

.test:
cmd.run:
- name: echo '{{apache.url}}'
- cwd: /

Adds support for relative include and exclude of .sls files. Example:

#lstateconf yaml . jinja

include:
- .apache
- .db.mysql
- ..app.django

exclude:
- sls: .users

If the above is written in a salt file at salt://some/where.sls then it will include salt://some/apache.sls,
salt://some/db/mysql.sls and salt://app/django.sls, and exclude salt://some/users.ssl. Actually, it does that by
rewriting the above include and exclude into:

include:
- some.apache
- some.db.mysql
- app.django

exclude:
- sls: some.users

Optionally (enabled by default, disable via the -G renderer option, e.g. in the shebang line: #!stateconf
-G), generates a stateconf. set goal state (state id named as . goal by default, configurable via the mas-
ter/minion config option, stateconf_goal_state) that requires all other states in the salt file. Note, the
. goa'l state id is subject to dot-prefix rename rule mentioned earlier.

Such goal state is intended to be required by some state in an including salt file. For example, in your webapp
salt file, if you include a sls file that is supposed to setup Tomcat, you might want to make sure that all states
in the Tomcat sls file will be executed before some state in the webapp sls file.

Optionally (enable via the -o renderer option, e.g. in the shebang line: #! stateconf -o0), orders the states in
a sls file by adding a requi re requisite to each state such that every state requires the state defined just before
it. The order of the states here is the order they are defined in the sls file. (Note: this feature is only available if
your minions are using Python >= 2.7. For Python2.6, it should also work if you install the ordereddict module
from PyPI)

By enabling this feature, you are basically agreeing to author your sls files in a way that gives up the explicit
(or implicit?) ordering imposed by the use of require, watch, require_in or watch_1in requisites,

282

Chapter 2. Configuring Salt

Salt Documentation, Release 2016.3.4

and instead, you rely on the order of states you define in the sls files. This may or may not be a better way for
you. However, if there are many states defined in a sls file, then it tends to be easier to see the order they will
be executed with this feature.

You are still allowed to use all the requisites, with a few restrictions. You cannot require or watch a state
defined after the current state. Similarly, in a state, you cannot require_in or watch_in a state defined
before it. Breaking any of the two restrictions above will result in a state loop. The renderer will check for
such incorrect uses if this feature is enabled.

Additionally, names declarations cannot be used with this feature because the way they are compiled into
low states make it impossible to guarantee the order in which they will be executed. This is also checked by
the renderer. As a workaround for not being able to use names, you can achieve the same effect, by generate
your states with the template engine available within your sls file.

Finally, with the use of this feature, it becomes possible to easily make an included sls file execute all its states
after some state (say, with id X) in the including sls file. All you have to do is to make state, X, require_in
the first state defined in the included sls file.

When writing sls files with this renderer, one should avoid using what can be defined in a name argument of a state
as the state's id. That is, avoid writing states like this:

/path/to/some/file:
file.managed:
- source: salt://some/file

cp /path/to/some/file file2:

cmd.run:
- cwd: /
- require:

- file: /path/to/some/file

Instead, define the state id and the name argument separately for each state. Also, the ID should be something
meaningful and easy to reference within a requisite (which is a good habit anyway, and such extra indirection would
also makes the sls file easier to modify later). Thus, the above states should be written like this:

add-some-file:
file.managed:
- name: /path/to/some/file
- source: salt://some/file

copy-files:
cmd.run:
- name: cp /path/to/some/file file2
- cwd: /
- require:

- file: add-some-file

Moreover, when referencing a state from a requisite, you should reference the state's id plus the state name rather
than the state name plus its name argument. (Yes, in the above example, you can actually require the file:
/path/to/some/file,instead of the file: add-some-Tf1ile). The reason is that this renderer will re-write
or rename state id's and their references for state id's prefixed with .. So, if you reference name then there's no way
to reliably rewrite such reference.

salt.renderers.wempy

salt.renderers.wempy.render (template_file, saltenv="base', sls="", argline="", context=None, *“kws)
Render the data passing the functions and grains into the rendering system

2.23. Renderers 283

Salt Documentation, Release 2016.3.4

Return type string

salt.renderers.yamlex

YAMLEX renderer is a replacement of the YAML renderer. It's 100% YAML with a pinch of Salt magic:

Instructed aggregation within the ! aggregation and the ! reset tags:

« All mappings are automatically OrderedDict

« All strings are automatically str obj

« data aggregation over documents for pillar

« data aggregation with laggregation yaml tag, based on the salt.utils.aggregation module.

#!yamlex

foo:
foo:
bar:
bar:
baz:
qux:

laggregate first
'aggregate second
laggregate {first: foo}
laggregate {second: bar}
laggregate 42

laggregate default

'reset qux: l!aggregate my custom data

is roughly equivalent to

foo:
bar:
baz:
qux:

[first, second]

{first: foo, second: bar}
[42]

[my custom data]

Reference

salt.renderers.yamlex.render (sls_data, saltenv="base’, sls="", *“kws)
Accepts YAML_EX as a string or as a file object and runs it through the YAML_EX parser.

Return type A Python data structure

284

Chapter 2. Configuring Salt

CHAPTER 3

Using Salt

This section describes the fundamental components and concepts that you need to understand to use Salt.

3.1 Grains

Salt comes with an interface to derive information about the underlying system. This is called the grains interface,
because it presents salt with grains of information. Grains are collected for the operating system, domain name, IP
address, kernel, OS type, memory, and many other system properties.

The grains interface is made available to Salt modules and components so that the right salt minion commands are
automatically available on the right systems.

Grain data is relatively static, though if system information changes (for example, if network settings are changed),
or if a new value is assigned to a custom grain, grain data is refreshed.

Note: Grains resolve to lowercase letters. For example, FOO, and foo target the same grain.

3.1.1 Listing Grains

Available grains can be listed by using the “grains.ls' module:

’ salt '+*' grains.ls

Grains data can be listed by using the “grains.items' module:

’ salt 'x' grains.items

3.1.2 Grains in the Minion Config

Grains can also be statically assigned within the minion configuration file. Just add the option grains and pass
options to it:

grains:
roles:
- webserver
- memcache
deployment: datacenter4

285

Salt Documentation, Release 2016.3.4

cabinet: 13
cab_u: 14-15

Then status data specific to your servers can be retrieved via Salt, or used inside of the State system for matching. It
also makes targeting, in the case of the example above, simply based on specific data about your deployment.

3.1.3 Grains in /etc/salt/grains

If you do not want to place your custom static grains in the minion config file, you can also put them in
/etc/salt/grains on the minion. They are configured in the same way as in the above example, only without
atop-level grains: key:

roles:

- webserver

- memcache
deployment: datacenter4
cabinet: 13
cab_u: 14-15

3.1.4 Matching Grains in the Top File

With correctly configured grains on the Minion, the top file used in Pillar or during Highstate can be made very
efficient. For example, consider the following configuration:

'node_type:webserver':
- match: grain
- webserver

'node_type:postgres':
- match: grain
- postgres

'node_type:redis':
- match: grain
- redis

'node_type:1lb':
- match: grain
- 1b

For this example to work, you would need to have defined the grain node_type for the minions you wish to match.
This simple example is nice, but too much of the code is similar. To go one step further, Jinja templating can be used
to simplify the top file.

% set the_node_type = salt['grains.get']('node_type', '') %}

{% if the_node_type %}
'node_type: {{ the_node_type }}':
- match: grain
- {{ the_node_type }}
% endif %}

Using Jinja templating, only one match entry needs to be defined.

286 Chapter 3. Using Salt

Salt Documentation, Release 2016.3.4

Note: The example above uses the grains.get function to account for minions which do not have the
node_type grain set.

3.1.5 Writing Grains

The grains are derived by executing all of the " "public" functions (i.e. those which do not begin with an underscore)
found in the modules located in the Salt's core grains code, followed by those in any custom grains modules. The
functions in a grains module must return a Python dict, where the dictionary keys are the names of grains, and each
key's value is that value for that grain.

Custom grains modules should be placed in a subdirectory named _grains located under the file_roots spec-
ified by the master config file. The default path would be /srv/salt/_grains. Custom grains modules will be
distributed to the minions when state. highstate is run, or by executing the saltutil.sync_grains or
saltutil.sync_all functions.

Grains modules are easy to write, and (as noted above) only need to return a dictionary. For example:

def yourfunction():
initialize a grains dictionary

grains = {}

Some code for logic that sets grains like
grains['yourcustomgrain'] = True
grains['anothergrain'] = 'somevalue'

return grains

The name of the function does not matter and will not factor into the grains data at all; only the keys/values returned
become part of the grains.

When to Use a Custom Grain

Before adding new grains, consider what the data is and remember that grains should (for the most part) be static
data.

If the data is something that is likely to change, consider using Pillar or an execution module instead. If it's a simple
set of key/value pairs, pillar is a good match. If compiling the information requires that system commands be run,
then putting this information in an execution module is likely a better idea.

Good candidates for grains are data that is useful for targeting minions in the top file or the Salt CLI. The name
and data structure of the grain should be designed to support many platforms, operating systems or applications.
Also, keep in mind that Jinja templating in Salt supports referencing pillar data as well as invoking functions from
execution modules, so there's no need to place information in grains to make it available to Jinja templates. For
example:

{{ salt['module.function_name']('argument_1', 'argument_2') }}
{{ pillar['my_pillar_key'] }}

3.1. Grains 287

https://docs.python.org/2/library/stdtypes.html#typesmapping

Salt Documentation, Release 2016.3.4

Warning: Custom grains will not be available in the top file until after the first highstate. To make custom grains
available on a minion's first highstate, it is recommended to use this example to ensure that the custom grains
are synced when the minion starts.

Loading Custom Grains

If you have multiple functions specifying grains that are called from a main function, be sure to prepend grain
function names with an underscore. This prevents Salt from including the loaded grains from the grain functions in
the final grain data structure. For example, consider this custom grain file:

#!/usr/bin/env python

def _my_custom_grain():
my_grain = {'foo': 'bar', 'hello': 'world'}
return my_grain

def main():
initialize a grains dictionary
grains = {}
grains['my_grains'] = _my_custom_grain()

return grains

The output of this example renders like so:

salt-call --local grains.items
local:
<Snipped for brevity>
my_grains:

bar
hello:
world

However, if you don't prepend the my_custom_grain function with an underscore, the function will be rendered
twice by Salt in the items output: once for the my_custom_grain call itself, and again when it is called in the
ma‘in function:

salt-call --local grains.items
local:
<Snipped for brevity>
foo:
bar
<Snipped for brevity>
hello:
world
<Snipped for brevity>
my_grains:

288 Chapter 3. Using Salt

Salt Documentation, Release 2016.3.4

3.1.6 Precedence
Core grains can be overridden by custom grains. As there are several ways of defining custom grains, there is an
order of precedence which should be kept in mind when defining them. The order of evaluation is as follows:

1. Core grains.

2. Custom grains in /etc/salt/grains.

3. Custom grains in /etc/salt/minion.

4. Custom grain modules in _grains directory, synced to minions.

Each successive evaluation overrides the previous ones, so any grains defined by custom grains modules synced
to minions that have the same name as a core grain will override that core grain. Similarly, grains from
/etc/salt/minion override both core grains and custom grain modules, and grains in _grains will override
any grains of the same name.

3.1.7 Examples of Grains

The core module in the grains package is where the main grains are loaded by the Salt minion and provides the
principal example of how to write grains:

https://github.com/saltstack/salt/blob/develop/salt/grains/core.py

3.1.8 Syncing Grains

Syncing grains can be done a number of ways, they are automatically synced when state.highstate is called,
or (as noted above) the grains can be manually synced and reloaded by calling the saltutil.sync_grains or
saltutil.sync_all functions.

3.2 Storing Static Data in the Pillar

Pillar is an interface for Salt designed to offer global values that can be distributed to all minions. Pillar data is
managed in a similar way as the Salt State Tree.

Pillar was added to Salt in version 0.9.8

Note: Storing sensitive data

Unlike state tree, pillar data is only available for the targeted minion specified by the matcher type. This makes it
useful for storing sensitive data specific to a particular minion.

3.2.1 Declaring the Master Pillar

The Salt Master server maintains a pillar_roots setup that matches the structure of the file_roots used in the Salt file
server. Like the Salt file server the pillar_roots option in the master config is based on environments mapping
to directories. The pillar data is then mapped to minions based on matchers in a top file which is laid out in the same
way as the state top file. Salt pillars can use the same matcher types as the standard top file.

The configuration for the pillar_roots in the master config file is identical in behavior and function as
file_roots:

3.2. Storing Static Data in the Pillar 289

https://github.com/saltstack/salt/blob/develop/salt/grains/core.py

Salt Documentation, Release 2016.3.4

pillar_roots:
base:
- /srv/pillar

This example configuration declares that the base environment will be located in the /srv/pillar directory. It
must not be in a subdirectory of the state tree.

The top file used matches the name of the top file used for States, and has the same structure:

/srv/pillar/top.sls

base:
l*!:

- packages

In the above top file, it is declared that in the base environment, the glob matching all minions will have the pillar
data found in the packages pillar available to it. Assuming the pillar_roots value of /srv/pillar taken
from above, the packages pillar would be located at /srv/pillar/packages.sls.

Any number of matchers can be added to the base environment. For example, here is an expanded version of the
Pillar top file stated above:

/srv/pillar/top.sls:

base:
I*l:
- packages
'webx':
- vim

In this expanded top file, minions that match webx will have access to the /srv/pillar/pacakges.sls file,
as well as the /srv/pillar/vim.sls file.

Another example shows how to use other standard top matching types to deliver specific salt pillar data to minions
with different properties.

Here is an example using the grains matcher to target pillars to minions by their os grain:

dev:
'os:Debian':
- match: grain
- servers

/srv/pillar/packages.sls

{% if grains['os'] == 'RedHat' %}
apache: httpd

git: git

{% elif grains['os'] == 'Debian' %}
apache: apache2

git: git-core

{% endif %}

company: Foo Industries

Important: See Is Targeting using Grain Data Secure? for important security information.

290 Chapter 3. Using Salt

Salt Documentation, Release 2016.3.4

The above pillar sets two key/value pairs. If a minion is running RedHat, then the apache key is set to httpd
and the g1t key is set to the value of git. If the minion is running Debian, those values are changed to apache2
and git-core respectively. All minions that have this pillar targeting to them via a top file will have the key of
company with a value of Foo Industries.

Consequently this data can be used from within modules, renderers, State SLS files, and more via the shared pillar
dict:

apache:
pkg.installed:
- name: {{ pillar['apache'] }}

git:
pkg.installed:
- name: {{ pillar['git'] }}

Finally, the above states can utilize the values provided to them via Pillar. All pillar values targeted to a minion are
available via the "pillar' dictionary. As seen in the above example, Jinja substitution can then be utilized to access
the keys and values in the Pillar dictionary.

Note that you cannot just list key/value-information in top.sls. Instead, target a minion to a pillar file and then
list the keys and values in the pillar. Here is an example top file that illustrates this point:

base:
I*Ic

- common_pillar

And the actual pillar file at */srv/pillar/common_pillar.sls":

foo: bar
boo: baz

3.2.2 Pillar namespace flattened

The separate pillar files all share the same namespace. Given a top.sls of:

base:
I*I-

- packages

- services

a packages.sls file of:

’bind: bind9

and a services.s's file of:

’ bind: named

Then a request for the b1ind pillar will only return named; the bind9 value is not available. It is better to structure
your pillar files with more hierarchy. For example your package. ss file could look like:

packages:
bind: bind9

3.2. Storing Static Data in the Pillar 291

https://docs.python.org/2/library/stdtypes.html#typesmapping

Salt Documentation, Release 2016.3.4

3.2.3 Pillar Namespace Merges

With some care, the pillar namespace can merge content from multiple pillar files under a single key, so long as
conflicts are avoided as described above.

For example, if the above example were modified as follows, the values are merged below a single key:

base:
I*Ic

- packages

- services

And a packages. sls file like:

bind:
package-name: bind9
version: 9.9.5

And a services.sls file like:

bind:
port: 53
listen-on: any

The resulting pillar will be as follows:

$ salt-call pillar.get bind
local:
listen-on:
any
package-name:
bind9
port:
53
version:
9.9.5

Note: Pillar files are applied in the order they are listed in the top file. Therefore conflicting keys will be overwritten
in a 'last one wins' manner! For example, in the above scenario conflicting key values in serviices will overwrite
those in packages because it's at the bottom of the list.

3.2.4 Including Other Pillars

New in version 0.16.0.

Pillar SLS files may include other pillar files, similar to State files. Two syntaxes are available for this purpose. The
simple form simply includes the additional pillar as if it were part of the same file:

include:
- users

The full include form allows two additional options -- passing default values to the templating engine for the included
pillar file as well as an optional key under which to nest the results of the included pillar:

292 Chapter 3. Using Salt

Salt Documentation, Release 2016.3.4

include:
- users:
defaults:
sudo: ['bob', 'paul']
key: users

With this form, the included file (users.sls) will be nested within the "users' key of the compiled pillar. Additionally,
the “sudo' value will be available as a template variable to users.sls.

3.2.5 Viewing Minion Pillar

Once the pillar is set up the data can be viewed on the minion via the pillar module, the pillar module comes
with functions, pillar.items and pillar